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Abstract— This paper details the VBIC95 bipolar junction
transistor (BJT) model. The model was developed as an indus-
try standard replacement for the SPICE Gummel-Poon (SGP)
model, to improve deficiencies of the SGP model that have
become apparent over time because of the advances in BJT
process technology. VBIC9S5 is still based on the Gummel-Poon
formulation, and thus can degenerate to be similar to the familiar
SGP model. However, it includes improved modeling of the Early
effect, quasi-saturation, substrate and oxide parasitics, avalanche
multiplication, and temperature behavior that can be invoked
selectively based on model parameter values.

I. INTRODUCTION

INCE SPICE2 [1] helped usher IC design into the era
Sof simulation, there has been an explosive growth in the
number of MOSFET models available and used for circuit
design. With over 50 MOSFET models in HSPICE, this growth
may have gone a little overboard. But for bipolar junction
transistors (BJT’s), the pendulum has not so much swung the
other way as it has become stuck. The SPICE Gummel-Poon
(SGP) model [1] and [2] is still the only BJT model widely
available and used for IC design. For modern BJT’s, the SGP
model is not sufficiently accurate for low risk design.

The formulation of the Gummel-Poon (GP) model accounts
for the key physical parameters and mechanisms that control
BIT behavior in an intuitive and consistent manner. However,
the approximations that underlie the SGP model ignore effects
that are important for accurate modeling of today’s BJT’s.
The simplified SGP Early effect model is inaccurate for g,
(output conductance) modeling, and collector resistance modu-
lation is ignored. Parasitic substrate transistor action, parasitic
capacitances of base-emitter overlap in double poly BJT’s,
avalanche multiplication, and self-heating are not modeled,
and the modeling of high frequency and temperature effects
is inadequate.
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BJT models that overcome some of these problems have
been published, e.g., [3]-[7], but have not become widely
available and used. Dr. J. Shier, for years the driving force
behind the IEEE Bipolar/BiCMOS Circuits and Technology
Meeting (BCTM), responded to complaints from meeting
attendees about the lack of progress in making improved BJT
models generally available by initiating a committee to address
the problem. The result is the VBIC95 model, reported hetre
and at BCTM 1996, and a commitment from major CAD
vendors to implement VBIC9S5 in their circuit simulators.
VBICOS5 addresses the shortcomings of the SGP model noted
above and is public domain. Complete source code is available.

Besides improving on the SGP model, VBIC95 was required
to be as similar as possible to the SGP model so that it could
leverage existing experience in BJT modeling and charac-
terization. This was done by including advanced modeling
features that are enabled and disabled by setting parameter
values. The advantages of smooth, continuous models that
do not use conditional statements to define separate operating
regions have become recognized over the past decade, and
VBIC95 is, apart from selectable backward compatibility with
the SGP model, single-piece and C,-continuous.

Fig. 1 shows the equivalent circuit for VBIC95. The model
includes an intrinsic BJT (an npn will be used here) based on
the Gummel-Poon model, and a parasitic BJT (pnp), modeled
with a partial Gummel-Poon model. Excess phase is modeled
through a second order network, and self-heating (not detailed
here) is modeled by including the effects of a local temperature
rise on the branch constituent relationships for each network
element and adding a thermal network to model the local
temperature rise.

Branch voltages are denoted: Vies = Vis — Vs, Viei
‘/bi - ‘/(:7',7 ‘/bcz = W)z - 1/caca ‘/bep = Vip — W)pa Vbcp =
Vii = Vip, Voeo = Vo = Ve, and Vieo = Vi — Ve, where Vj; is
the voltage on node “bi” in Fig. 1, and so on.

II. INTRINSIC GUMMEL-POON MODEL

The forward transport current is [2]

L — I,
I 7
db
Vei
Ly =1Is [exp (ﬁ) - 1}
L, =1Is {exp (N—Zbi_) - 1} (1)
tv

where Iy and I are the forward and reverse transport
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Fig. 1. Equivalent network for VBIC95.

currents and V;, = kT'/q. Separate nonideality factors Ng
and Np are included for forward and reverse components
of I.., for compatibility with the SGP model. However, we
recommend using Np = N, otherwise the model can become
nonpassive.

The normalized base charge g, in (1) is modeled using
depletion and diffusion charge components, and not with the
approximate linearized depletion charges used in the SGP
model, so

q
B=q+ =
y
Gje Qjc
=1+ =+
o Ver = Ver
]tf Iy,
= )
® = Tr T Ik
where the b—e and b—c depletion charges are
Qje =Qj(Vbewt, Pg, ME)
Gje ZQJ(‘/bcly PC7 MC) (3)

Here, Vg and Vgp are forward and reverse Early voltages,
Igp and Igp are forward and reverse knee currents, and
Pg, Po and Mg, M are the built-in potentials and grading
coefficients of the b—e and b—c junctions. ¢; is smoothly limited
to be greater than 0.0001, to avoid numerical problems.
VBIC95 has two models for the depletion charge function
g;. The standard SGP piecewise model and a single-piece
model for which the capacitance smoothly limits to a constant
value for junction biases greater than the built-in potential.
Fig. 2 shows g, modeling for VBIC95 for both forward
and reverse operation, for three values of base bias. SGP
(not shown in Fig. 2) models g, as a constant, whereas
VBIC95 models the bias dependence of g,. Fig. 3 shows
9o/ 1. from reverse output characteristics, SGP cannot model
the nonmonotonic variation with bias. The inaccuracies arise
because of the linearized Early effect model (¢;1) used in

SGP, compared to the proper depletion charge based model
of VBIC95S.

The b-e depletion charge is modeled as Cjrgq;. and is
partitioned between Qp. and Qp.. as Wpg and 1 — Wgg,
where Wpp is a parameter which varies from one to zero,
and to a first-order model’s distributed base effects. Q. also
includes a diffusion charge component 77I;5, Where 7F is
modeled as in the SGP model. Improved 77 models have been
reported [8], however the SGP model is still reasonable and so
was retained for compatibility, for the present. Qp. includes
a depletion charge term C;¢q;. and a diffusion charge term
Trl:r, and an additional depletion charge term, detailed below,
that models charge associated with the base pushing out into
the collector.

Comparison of the g, Qe, and Qp. models shows that

CreVeEr =CicVEF %
b
=7rlKF
=7rlKkR
~ Qvo )
should hold, where A, and A; are the areas of the b—e and
b-c junctions, and @y is the base Gummel number. For
modeling flexibility and separation of dc and ac modeling,
the relationship (4) is not enforced in VBIC9S.

The b-e component of base current comprises ideal and

nonideal components

‘/bei
Ly =1 -1
bt BEI [QXP (NEIVtu
%ei
1 — ) -1
iEN [exp <NEN Vi,
and is, like the b—e depletion charge, partitioned between [p,
and ., as Wgg and 1 — Wpgg to model, to a first order, the
distributed nature of the base. Similarly the b—c component of

(5)
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Fig. 2. (a) g, from forward output data and (b) g, from reverse output data.

X X X data, solid line VBIC9S.

base current /5. includes ideal and nonideal components. The
physical mechanism that controls base current, recombination,
and generation in the base and emitter for I, is separate
from the mechanism that controls collector current, transport
physics, and the base charge, so unlike SGP, in VBIC95
the two currents are not linked by a phenomenological beta
parameter. This, in the future, will allow improved modeling
of process variation and geometry effects.

The b—c component of base current also includes a weak
avalanche component [9]

Igc = (]cc - Ibc)AVcl(PC’ - ‘/bcz)

- exp [~Avea(Po — Vie) P71 ©)

where Ay and Ay e are model parameters.

Excess phase in VBIC95 modifies I;; as follows. I ¢ in
Fig. 1is I;; from (1). If the capacitance of the charge element
(Qcay is C and the inductance of the flux element £, 5 is L,
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then the voltage at node zf> is

1
szzz—z“—gc——l— (7
StITTio

which, on setting L = Tp/3 and C' = T, where Tp = 1/wyg
is a parameter of VBIC9S, is just the second-order Bessel
polynomial approximation to excess phase of [10]. V; ¢» is then
used as I;y in I... This implementation is consistent between
ac and transient analyzes and is independent of the numerical
algorithm used for integration.

III. PARASITIC PARTIAL GUMMEL~POON MODEL

The transport current I.., of the parasitic transistor is
modeled similarly to /... Because the parasitic is distributed
between intrinsic (under the emitter) and extrinsic (not under
the emitter) components, the control of the forward component
of I, is split between Vi, and Vi, as

Itfp :Isp I:Wsp exp (—ﬁ%—)

Vci
+ (1= Wsp) exp (ET;TJ ~ 1} ®)

The normalized base charge of the parasitic only includes
high-level forward injection

Gbp =1 + _(12‘;17
bp
Iy
Gop = ]_p (9)

as the Early effects and high level reverse injection are not
important to model the behavior of the parasitic.

The charge elements associated with the parasitic transistor
include depletion components, and a diffusion charge compo-
nent 7rlyyp is added to Qsep. The base current components of
the parasitic include ideal and nonideal components, modeled
similarly to the base current components of the intrinsic device.
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IV. INTRINSIC COLLECTOR MODELING

The modeling of the current in the intrinsic collector (epi)
region is based on the analysis of [4]. Although the model
of [4] has been adopted in the major commercial SPICE
simulators, it has only recently becoming widely known that
the model of [4] can predict negative g, at high Vj.. If the
velocity saturation model in [4] is ignored, then the current
in the epi is

Kipei + 1
Vrcv‘, + V;'u ':Kbci - Kbcm - 1Ogg (717—+_>j|
bex + 1

Ie N =
pi0
Rey

Vbci 12
1+ vexp v
tv

v 1/2
oo (32)
© Y €Xp Vi

where Vi..; = Viei ~ Viea- In [4], this is coupled with a velocity
saturation model zt = p20/(1 + 20| Ve |vsat) Where vy, is the
electron saturation speed. This modifies the denominator above
to become Re(1+|Viei|/Vo) where Vo = Wepivsat/ 1o This
velocity saturation model is undesirable because it introduces
discontinuities in high-order derivatives and because it causes
the negative g,. By using the alternative model ¢ = po/[1 +
(110Vde /vsar)?]Y/?, and by using I.pioReop instead of Vi
in this model, both of the problems are overcome. Further,
we empirically change Vo with V,;, through the high R¢
parameter Hrcp, to account for the increase in collector
current with increases V,..; at high Vj;. The final model for
the current in Rgg is

I

Ky

(10)

IcpiO 1z
Vi
Lrei = 1 LepioRor
+ (2. 172
0.5(V.2, + 0.01)
Vo 't = Hrer
oHprcF (an

where a smooth approximation to |V,..;| has been used to avoid
numerical problems and preserve high order continuity.

Fig. 4(a) shows a fit of VBIC9S to forward output data that
includes significant quasi-saturation effects. For comparison,
Fig. 4(b) shows that same data fitted by the SGP model.
Because SGP includes a fixed collector resistance, it cannot fit
the region where collector resistance modulation is occurring
properly. The dashed line is SGP with a value of R¢ chosen to
model the onset of quasi-saturation reasonably, and the dotted
line is SGP with R chosen to model deep saturation behavior
reasonably. The improvement with VBIC9S is clear.

Qs includes a component (oo Kiei, Which models part of
the charge associated with base pushout [4]. The other part is

Qbex = QcoKpes-

V. PARASITIC RESISTANCE AND CAPACITANCE MODELING

To model constant b~e and b—c overlap capacitances, which
are important for modern double poly BIT’s, VBIC95 includes
the linear overlap capacitors Cpgpo and Cpco. Emitter,
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substrate, and extrinsic base and collector resistances are
modeled as linear resistors. The base resistances of the in-
trinsic and parasitic transistors are bias dependent, with their
resistances modulated by the normalized base charges. The
SGP model allows selection of either a ¢, modulated intrinsic
base resistance Rpy, or Rp; modified with bias to account
for emitter crowding. Both mechanisms occur in practice, but
no model that accurately includes both effects, over geometry,
is available at present. The base partitioning by Wgg to a
first-order models some emitter crowding effects, so the g
modulation model is used in VBIC95.

VI. TEMPERATURE MAPPINGS

BIT electrical behavior varies with temperature, and so
VBIC95 has temperature mappings defined for its model
parameters. The mappings are similar to, but improved on,
the temperature mappings for the SGP model.
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The resistances have a temperature variation

T, XR
R(T») = R(TY) (——)

Ty
where the temperatures are in Kelvin, and there is a separate
X g parameter for each doping type region.

The transport saturation current varies as

g_q}” a3

Viw

where rp = T /T and X;s and F 4 are parameters. This is
similar to the SGP model and is based on the variation of n?,
with temperature. The other saturation currents have similar
temperature mappings, with separate activation energies for
ideal and nonideal components. This allows fitting of Sr and
[Or over bias and temperature.

The junction built-in potentials P vary with temperature
as (kT/q)log, (nnoppo/nZ.). which is similar to the SGP
model, but avoids the problem with the SGP model of the

(12)

Is(T) = Is(Th) {r%”s exp [fEA
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TABLE I
COMPARISON OF S-PARAMETER FITS
s-parameter | SGP RMS % error | VBIC95 RMS % error
re(Sqq) 99.9 7.0
im(S4¢) 65.2 6.2
re(Sqp) 112.6 12.0
re(S,q) 209.6 14.3
im(821) 81.6 8.3
re(Syo) 31.3 8.5

potentials becoming negative as temperature increases. The
zero bias junction capacitances vary as where M is the junction
grading coefficient. The parameter + in the quasi-sat model
is proportional to nZ, [4], and so varies with temperature as
(13). Vo is modeled similarly to (12), with parameter Xy o,
and Ng, Ng, and Ay 2 are modeled as varying linearly with
temperature.

VII. EXAMPLES

Figs. 2~4 show the accuracy of VBIC95 for modeling g,
(i.e., for modeling the Early effect) and for modeling quasi-
saturation. Fig. 5 shows a fit of VBIC95 to forward Gumme]
data. Fig. 6 shows a comparison of g, modeling by VBIC95
and by SGP. The improvement VBIC9S offers over SGP is
clear, and is due to the collector resistance modulation model,
the proper Early effect model, and the weak avalanche model.
All of these effects were inherent in the measured data of
Fig. 6.

Fig. 7 shows fits of VBIC95 to S»; data, over a range of
Vie and V.. values. The different trend in the shape of the
curves over bias and frequency is apparent and is modeled by
VBIC95. Table I compares rms errors over bias and frequency
between VBIC95 and SGP. The models were optimized in the
same optimization tool to the same data.

VIII. CONCLUSIONS

In this paper we have detailed the VBIC95 BJT model and
provided examples that show how it improves on the SGP
model. VBIC95 was developed to provide a public domain
BJT model suitable for accurate simulation of circuits being
designed in modern IC bipolar technologies. A significant
emphasis is “public domain,” and this not only means that the
model code and associated test programs are available, but that
CAD suppliers were involved in the model development and
have committed to implementing VBIC95 in their simulators
and that extraction algorithms are also available. These are
still under development and were reviewed in [11].

Commercial versions of VBIC95 will be available through
Analogy, Cadence, HP, Meta-Software, Microsim, and Sil-
vaco, and VBIC95 will also be available in proprietary AT&T
and Motorola circuit simulators. Extraction routines will be
available from HP, Silvaco, and TMA.

Complete source code for VBIC9S5, with a stand-alone
solver and test results for verification of implementations, is
available from mcandrew @sst.sps.mot.com.
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