
The Designer’s Guide Community downloaded from www.designers-guide.org

Predicting the Phase Noise and Jitter of
PLL-Based Frequency Synthesizers

Ken Kundert
Designer’s Guide Consulting, Inc.
Version 4i, 23 October 2015 Two methodologies are presented for predicting the phase noise and jitter of a PLL-
based frequency synthesizer using simulation that are both accurate and efficient. The
methodologies begin by characterizing the noise behavior of the blocks that make up the
PLL using transistor-level RF simulation. For each block, the phase noise or jitter is
extracted and applied to a model for the entire PLL.

Search Terms Phase-locked loop, PLL simulation, PLL phase-domain modeling, frequency synthe-
sizer, oscillator phase noise, jitter, cyclostationary noise, charge-pump noise, phase-
detector noise, frequency divider noise, SpectreRF, Verilog-A.

This paper was written in August 2002. It was last updated on March 10, 2019. You can find the
most recent version at www.designers-guide.org. Contact the author via e-mail at ken@designers-
guide.com.

Permission to make copies, either paper or electronic, of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or commer-
cial advantage and that the copies are complete and unmodified. To distribute otherwise, to pub-
lish, to post on servers, or to distribute to lists, requires prior written permission.

Designer’s Guide is a registered trademark of Kenneth S. Kundert. All rights reserved.
Copyright  2002–2019, Kenneth S. Kundert – All Rights Reserved 1 of 52

https://www.designers-guide.org/
https://www.designers-guide.org/
https://www.designers-guide.org
https://www.designers-guide.org
mailto:ken@designers-guide.com
mailto:ken@designers-guide.com
mailto:ken@designers-guide.com
http://www.designers-guide.com/home.html

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Introduction
Contents

1 Introduction 2
1.1 Frequency Synthesis 3
1.2 Direct Simulation 3
1.3 When Direct Simulation Fails 4
1.4 Monte Carlo-Based Methods 4
1.5 Predicting Noise in PLLs 5

2 Phase-Domain Model 6
2.1 Small-Signal Stability 9
2.2 Noise Transfer Functions 9
2.3 Noise Model 11

3 Oscillators 11
3.1 Oscillator Phase Noise 12
3.2 Characterizing Oscillator Phase Noise 14
3.3 Phase-Domain Models for the Oscillators 16

4 Loop Filter 17
5 Phase Detector and Charge Pump 18
6 Frequency Dividers 19

6.1 Cyclostationary Noise. 19
6.2 Converting to Phase Noise 21
6.3 Phase-Domain Model for Dividers 21

7 Fractional-N Synthesis 22
8 Jitter 24

8.1 Jitter Metrics 25
8.2 Types of Jitter 26

9 Synchronous Jitter 27
9.1 Extracting Synchronous Jitter 29

10 Accumulating Jitter 31
10.1 Extracting Accumulating Jitter 32

11 Jitter of a PLL 35
12 Modeling a PLL with Jitter 35

12.1 Modeling Driven Blocks 35
12.2 Modeling Accumulating Jitter 37
12.3 VCO Model 38
12.4 Efficiency of the Models 39

13 Simulation and Analysis 45
14 Example 46
15 Conclusion 48

15.1 If You Have Questions 49

1 Introduction

Phase-locked loops (PLLs) are used to implement a variety of timing related functions,
such as frequency synthesis, clock and data recovery, and clock de-skewing. Any jitter
or phase noise in the output of the PLL used in these applications generally degrades the
performance margins of the system in which it resides and so is of great concern to the
designers of such systems. Jitter and phase noise are different ways of referring to an
undesired variation in the timing of events at the output of the PLL. They are difficult to
2 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Introduction Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
predict with traditional circuit simulators because the PLL generates repetitive switch-
ing events as an essential part of its operation, and the noise performance must be eval-
uated in the presence of this large-signal behavior. SPICE is useless in this situation as it
can only predict the noise in circuits that have a quiescent (time-invariant) operating
point. In PLLs the operating point is at best periodic, and is sometimes chaotic.
Recently a new class of circuit simulators has been introduced that are capable of pre-
dicting the noise behavior about a periodic operating point [18]. Spectre®RF1 is the
most popular of this class of simulators and, because of the algorithms used in its imple-
mentation, is likely to be the best suited for this application [1]. These simulators can be
used to predict the noise performance of PLLs. The ideas presented in this paper allow
those simulators to be applied even to those PLLs that have chaotic operating points.

The focus of this paper is frequency synthesis. Information on predicting the noise and
jitter of clock and data recovery circuits can be found elsewhere [21,23].

1.1 Frequency Synthesis

The block diagram of a PLL operating as a frequency synthesizer is shown in
Figure 1 [8]. It consists of a reference oscillator (OSC), a phase/frequency detector
(PFD), a charge pump (CP), a loop filter (LF), a voltage-controlled oscillator (VCO),
and two frequency dividers (FDs). The PLL is a feedback loop that, when in lock, forces
ffb to be equal to fref. Given an input frequency fin, the frequency at the output of the
PLL is

(1)

where M is the divide ratio of the input frequency divider, and N is the divide ratio of the
feedback divider. By choosing the frequency divide ratios and the input frequency
appropriately, the synthesizer generates an output signal at the desired frequency that
inherits the long-term stability of the input oscillator. In RF transceivers, this architec-
ture is commonly used to generate the local oscillator (LO) at a programmable fre-
quency that tunes the transceiver to the desired channel by adjusting the value of N.

1.2 Direct Simulation

In many circumstances, SpectreRF can be directly applied to predict the noise perfor-
mance of a PLL. To make this possible, the PLL must at a minimum have a periodic
steady state solution. This rules out systems such as bang-bang clock and data recovery
circuits and fractional-N synthesizers because they behave in a chaotic way by design. It

1. Spectre is a registered trademark of Cadence Design Systems.

FIGURE 1 The block diagram of a frequency synthesizer.

fout
N
M
----- fin=

OSC
FD

PFD CP LF VCO

FD
÷N

÷Mfin

fref

ffb

fout
3 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Introduction
also rules out any PLL that is implemented with a phase detector that has a dead zone. A
dead zone has the effect of opening the loop and letting the phase drift seemingly at ran-
dom when the phase of the reference and the output of the voltage-controlled oscillator
(VCO) are close. This gives these PLLs a chaotic nature.

To perform a noise analysis, SpectreRF must first compute the steady-state solution of
the circuit with its periodic steady state (PSS) analysis. If the PLL does not have a peri-
odic solution, as the cases described above do not, then it will not converge. There is an
easy test that can be run to determine if a circuit has a periodic steady-state solution.
Simply perform a transient analysis until the PLL approaches steady state and then
observe the VCO control voltage. If this signal consists of frequency components at
integer multiples of the reference frequency, then the PLL has a periodic solution. If
there are other components, it does not. Sometimes it can be difficult to identify the
undesirable components if the components associated with the reference frequency are
large. In this case, use the strobing feature of Spectre’s transient analysis to eliminate all
components at frequencies that are multiples of the reference frequency. Do so by strob-
ing at the reference frequency. In this case, if the strobed VCO control voltage varies in
any significant way the PLL does not have a periodic solution.

If the PLL has a periodic solution, then in concept it is always possible to apply Spec-
treRF directly to perform a noise analysis. However, in some cases it may not be practi-
cal to do so. The time required for SpectreRF to compute the noise of a PLL is
proportional to the number of circuit equations needed to represent the PLL in the simu-
lator multiplied by both the number of time points needed to accurately render a single
period of the solution and the number of frequencies at which the noise is desired. When
applying SpectreRF to frequency synthesizers with large divide ratios, the number of
time points needed to render a period can become problematic. Experience shows that
divide ratios greater than ten are often not practical to simulate. Of course, this varies
with the size of the PLL.

For PLLs that are candidates for direct simulation using SpectreRF, simply configure
the simulator to perform a PSS analysis followed by a periodic noise (PNoise) analysis.
The period of the PSS analysis should be set to be the same as the reference frequency
as defined in Figure 1. The PSS stabilization time (tstab) should be set long enough to
allow the PLL to reach lock. This process was successfully followed on a frequency
synthesizer with a divide ratio of 40 that contained 2500 transistors, though it required
several hours for the complete simulation [36].

1.3 When Direct Simulation Fails

The challenge still remains, how does one predict the phase noise and jitter of PLLs that
do not fit the constraints that enable direct simulation? The remainder of this document
attempts to answer that question for frequency synthesizers, though the techniques pre-
sented are general and can be applied to other types of PLLs by anyone who is suffi-
ciently determined.

1.4 Monte Carlo-Based Methods

Demir proposed an approach for simulating PLLs whereby a PLL is described using
behavioral models simulated at a high level [3,4]. The models are written such that they
include jitter in an efficient way. He also devised a simulation algorithm based on solv-
4 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Introduction Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
ing a set of nonlinear stochastic differential equations that is capable of characterizing
the circuit-level noise behavior of blocks that make up a PLL [4,5]. Finally, he gave for-
mulas that can be used to convert the results of the noise simulations on the individual
blocks into values for the jitter parameters for the corresponding behavioral models [6].
Once everything is ready, simulation of the PLL occurs with the blocks of the PLL
being described with behavioral models that exhibit jitter. The actual jitter or phase
noise statistics of the PLL are observed during this simulation. Generally tens to hun-
dreds of thousands of cycles are simulated, but the models are efficient so the time
required for the simulation is reasonable. This approach allows prediction of PLL jitter
behavior once the noise behavior of the blocks has been characterized. However, it
requires the use of an experimental simulator that is not readily available to characterize
the jitter of the blocks.

In an earlier series of papers [19,20], the relevant ideas of Demir were adapted to allow
use of a commercial simulator, Spectre [16], and an industry standard modeling lan-
guage, Verilog-A2 [17,33]. These ideas are further refined in the later half of this manu-
script.

1.5 Predicting Noise in PLLs

There are two different approaches to modeling noise in PLLs. One approach is to for-
mulate the models in terms of the phase of the signals, producing what are referred to as
phase-domain models. In the simplest case, these models are linear and analyzed easily
in the frequency domain, making it simple to use the model to predict phase noise, even
in the presence of flicker noise or other noise sources that are difficult to model in the
time domain. Phase-domain models are described in the first half of this manuscript.

The process of predicting the phase noise of a PLL using phase-domain models
involves:

1. Using SpectreRF to predict the noise of the individual blocks that make up the PLL.

2. Building high-level behavioral models of each of the blocks that exhibit phase noise.

3. Assembling the blocks into a model of the PLL.

4. Simulating the PLL to find the phase noise of the overall system.

The other approach formulates the models in terms of voltage, and so are referred to as
voltage-domain models. The advantage of voltage-domain models is that they can be
refined to implementation. In other words, as the design process transitions to being
more of a verification process, the abstract behavioral models initially used can be
replaced with detailed gate- or transistor-level models in order to verify the PLL as
implemented.

Voltage-domain models are strongly nonlinear and never have quiescent operating
points, making them incompatible with a SPICE-like noise analysis. Often they do have a
periodic operating point and so can be analyzed with small-signal RF noise analysis
(SpectreRF), but it is also common for that not to be the case. For example, a fractional-
N synthesizer does not have a periodic operating point. Occasionally, the circuit is sensi-
tive enough that the noise affects the large-signal behavior of the PLL, such as with

2. Verilog is a registered trademark of Cadence Design Systems licensed to Accellera.
5 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Phase-Domain Model
bang-bang clock-and-data recovery PLLs, which invalidates any use of small-signal
noise analysis.

Modeling large-signal noise in a voltage-domain model as a voltage or a current is prob-
lematic. Such signals are very small and continuously, and generally rapidly varying.
Extremely tight tolerances and small time steps are required to accurately resolve such
signals with simulation. To overcome these problems, the noise is instead represented
using the effect it has on the timing of the transitions within the PLL. In other words, the
noise is added to the circuit in the form of jitter. In this case there is no need for either
small time steps or tight tolerances.

The process of predicting the jitter of a PLL with voltage-domain models involves:

1. Using SpectreRF to predict the noise of the individual blocks that make up the PLL.

2. Converting the noise of the block to jitter.

3. Building high-level behavioral models of each of the blocks that exhibit jitter.

4. Assembling the blocks into a model of the PLL.

5. Simulating the PLL to find the jitter of the overall system.

The simple linear phase-domain model described in the first part of this paper, and the
nonlinear voltage-domain model described in the second part, represent the two ends of
a continuum of models. Generally, the phase-domain models are considerably more effi-
cient, but the voltage-domain models do a better job of capturing the details of the
behavior of the loop, details such as the signal capture and escape processes. The phase-
domain models can be made more general by making them nonlinear and by analyzing
them in the time domain. It is common to use such models with fractional-N synthesiz-
ers. Conversely, simplifications can be made to the voltage-domain models to make
them more efficient. It is even possible to use both voltage- and phase-domain models
for different parts of the same loop. One might do so to retain as much efficiency as pos-
sible while allowing part of the design to be refined to implementation level. In general
it is best to understand both approaches well, and use ideas from both to construct the
most appropriate approach for your particular situation.

2 Phase-Domain Model

It is widely understood that simulating PLLs is expensive because the period of the
VCO is almost always very short relative to the time required to reach lock. This is par-
ticularly true with frequency synthesizers, especially those with large multiplication fac-
tors. The problem is that a circuit simulator must use at least 10-20 time points for every
period of the VCO for accurate rendering, and the lock process often involves hundreds
or thousands of cycles at the input to the phase detector. With large divide ratios, this
can translate to hundreds of thousands of cycles of the VCO. Thus, the number of time
points needed for a single simulation could range into the millions.

This is all true when simulating the PLL in terms of voltages and currents. When doing
so, one is said to be using voltage-domain models. However, that is not the only option
available. It is also possible to formulate models based on the phase of the signals. In
this case, one would be using phase-domain models. The high frequency variations
associated with the voltage-domain models are not present in phase-domain models, and
so simulations are considerably faster. In addition, when in lock the phase-domain-
6 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Phase-Domain Model Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
based models generally have constant-valued operating points, which simplifies small-
signal analysis, making it easier to study the closed-loop dynamics and noise perfor-
mance of the PLL using either AC or noise analysis.

A linear phase-domain model of a frequency synthesizer is shown in Figure 2. Such a
model is suitable for modeling the behavior of the PLL to small perturbations when the
PLL is in lock as long as you do not need to know the exact waveforms and instead are
interested in how small perturbations affect the phase of the output. This is exactly what
is needed to predict the phase noise performance of the PLL.

The derivation of the model begins with the identification of those signals that are best
represented by their phase. Many blocks have large repetitive input signals with their
outputs being primarily sensitive to the phase of their inputs. It is the signals that drive
these blocks that are represented as phase. They are identified using a φ variable in
Figure 2. Notice that this includes all signals except those at the inputs of the LF and
VCO.

The models of the individual blocks will be derived by assuming that the signals associ-
ated with each of the phase variables is a pulse train. Though generally the case, it is not
a requirement. It simply serves to make it easier to extract the models. Define Π(t0, τ, T)
to be a periodic pulse train where one of the pulses starts at t0 and the pulses have dura-
tion τ and period T as shown in Figure 3. This signal transitions between 0 and 1 if τ is
positive, and between 0 and –1 if τ is negative. The phase of this signal is defined to be
φ = 2πt0 /T. In many cases, the duration of the pulses is of no interest, in which case
Π(t0, T) is used as a short hand. This occurs because the input that the signal is driving
is edge triggered. For simplicity, we assume that such inputs are sensitive to the rising
edges of the signal, that t0 specifies the time of a rising edge, and that the signal is tran-
sitioning between 0 and ±1.

The input source produces a signal vin = Π(t0, T). Since this is the input, t0 is arbitrary.
As such, we are free to set its phase φ to any value we like.

FIGURE 2 Linear time-invariant phase-domain model of the synthesizer shown in Figure 1.

FIGURE 3 The pulse train waveform represented by Π(t0, τ, T).

LF VCOCP

FDN
φfb

φref φoutφin

+
–

Σ

FDM

1
M

1
N

Kdet

2π
---------- H ω()

2πKvco

jω

OSC
vc

PFD
φdiff icp

τ

t0
T

0

1

–1
τ

t0 T
0

1

–1

τ < 0τ > 0
7 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Phase-Domain Model
Given a signal vi = Π(t0, T) a frequency divider will produce an output signal
vo = Π(t0, NT) where N is the divide ratio. The phase of the input is φi = 2πt0 /T and the
phase of the output is φo = 2πt0/(NT) and so the phase transfer characteristic of a divider
is

φo = φi/N. (2)

There are many different types of phase detectors that can be used, each requiring a
somewhat different model. Consider a simple phase-frequency detector combined with
a charge pump [31]. In this case, the detector takes two inputs, v1 = Π(t1, T) and
v0 = Π(t0, T) and produces an output icp = ImaxΠ(t0, t1 – t0, T) where Imax is the maxi-
mum output current of the charge pump. The output of the charge pump immediately
passes through a low pass filter that is designed to suppress signals at frequencies of 1/T
and above, so in most cases the pulse nature of this signal can be ignored in favor of its
average value, . Thus, the transfer characteristic of the combined PFD/CP is

(3)

where Kdet = Imax. Of course, this is only valid for at the most. The
behavior outside this range depends strongly on the type of phase detector used [8].
Even within this range, the phase detector may be better modeled with a nonlinear trans-
fer characteristic. For example, there can be a flat spot in the transfer characteristics
near 0 if the detector has a dead zone. However it is generally not productive to model
the dead zone in a phase-domain model.3

The model of (3) is a continuous-time approximation to what is inherently a discrete-
time process. The phase detector does not continuously monitor the phase difference
between its two input signals, rather it outputs one pulse per cycle whose width is pro-
portional to the phase difference. Using a continuous time approximation is generally
acceptable if the bandwidth of the loop filter is much less than fref (generally less than
fref/10 is sufficient). In practical PLLs this is almost always the case. It is possible to
develop a detailed phase-domain PFD model that includes the discrete-time effects, but
it would run more slowly and the resulting phase-domain model of the PLL would not
have a quiescent operating point, which makes it more difficult to analyze.

The voltage-controlled oscillator, or VCO, converts its input voltage to an output fre-
quency, and the relationship between input voltage and output frequency can be repre-
sented as

fout = F(vc) (4)

The mapping from voltage to frequency is designed to be linear, so a first-order model is
often sufficient,

fout = Kvcovc. (5)

It is the output phase that is needed in a phase-domain model,

3. This phase-domain model is a continuous-time model that ignores the sampling nature of the
phase detector. A dead zone interacts with the sampling nature of the detector to create a cha-
otic limit cycle behavior that is not modeled with the phase-domain model. This chaotic
behavior creates a substantial amount of jitter, and for this reason, most modern phase detec-
tors are designed such that they do not exhibit dead zones.

icp 

icp  Imax

t1 t0–

T
-------------- Imax

φ1 φ0–

2π

Kdet

2π
---------- φ1 φ0–()= = =

φ1 φ2– 2π<
8 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Phase-Domain Model Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
(6)

or in the frequency domain,

. (7)

2.1 Small-Signal Stability

This completes the derivation of the phase-domain models for each of the blocks. Now
the full model is used to help predict the small-signal behavior of the PLL. Start by
using Figure 2 to write a relationship for its loop gain. Start by defining

(8)

to be the forward gain,

(9)

to be the feedback factor, and

(10)

to be the loop gain. The loop gain is used to explore the small-signal stability of the
loop. In particular, the phase margin is an important stability metric. It is the negative of
the difference between the phase shift of the loop at unity gain and 180°, the phase shift
that makes the loop unstable. It should be no less than 45° [10]. When concerned about
phase noise or jitter, the phase margin is typically 60° or more to reduce peaking in the
closed-loop gain, which would result in excess phase noise.

2.2 Noise Transfer Functions

In Figure 4 various sources of noise have been added. These noise sources can represent
either the noise created by the blocks due to intrinsic noise sources (thermal, shot, and
flicker noise sources), or the noise coupled into the blocks from external sources, such
as from the power supplies, the substrate, etc. Most are sources of phase noise, and
denoted φin, φfdm, φfdn, and φvco, because the circuit is only sensitive to phase at the
point where the noise is injected. The one exception is the noise produced by the PFD/
CP, which in this case is considered to be a current, and denoted idet.

Then the transfer functions from the various noise sources to the output are

, (11)

, (12)

φout t() 2π Kvcovc t() td=

φout ω()
2πKvco

jω
------------------vc ω()=

Gfwd

φout

φdiff

Kdet

2π
----------H ω()

2πKvco

jω

KdetKvcoH ω()
jω

-----------------------------------= = =

Grev

φfb

φout
--------- 1

N
----= =

T GfwdGrev

KdetKvcoH ω()
jωN

-----------------------------------= =

Gref

φout

φref

Gfwd

1 T+

NGfwd

N Gfwd+
----------------------= = =

Gvco

φout

φvco
---------- 1

1 T+
------------ N

N Gfwd+
----------------------= = =
9 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Phase-Domain Model
, (13)

and by inspection,

, (14)

, (15)

. (16)

On this last transfer function, we have simply referred idet to the input by dividing
through by the gain of the phase detector.

These transfer functions allow certain overall characteristics of phase noise in PLLs to
be identified. As , because of the VCO and the low-pass filter, and so

 and . At high frequencies, the noise of the
PLL is that of the VCO. Clearly this must be so because the low-pass LF blocks any
feedback at high frequencies.

As , because of the term from the VCO. So at DC,
, and . At low frequencies, the noise of

the PLL is contributed by the OSC, PFD/CP, FDM and FDN, and the noise from the
VCO is diminished by the gain of the loop.

Consider further the asymptotic behavior of the loop and the VCO noise at low offset
frequencies . Oscillator phase noise in the VCO results in the power spectral
density being proportional to 1/ω2, or (neglecting flicker noise). If
the LF is chosen such that , then , and contribution from the
VCO to the output noise power, , is finite and nonzero. If the LF is chosen
such that , as it typically is when a true charge pump is employed, then

 and the noise contribution to the output from the VCO goes to zero at low
frequencies.

FIGURE 4 Linear time-invariant phase-domain model of the synthesizer shown in Figure 2 with
representative noise sources added. The φ’s represent various sources of noise.

LF VCO

Σ
PFD/CP

FDN

ΣΣ

Σ

φfdn

φref

φvco

φout

idet

–+

FDM

Σ

φfdm

φin
1
M

1
N

Kdet

2π
--------- H ω()

2πKvco
jω-----------------

Gin

φout

φin
--------- 1

M

Gfwd

1 T+
------------ 1

M

NGfwd

N Gfwd+

Gref

M
---------= = = =

Gfdn

φout

φfdn
--------- Gref–= =

Gfdm

φout

φfdm
----------- Gref= =

Gdet

φout

idet

2πGref

Kdet
----------------= =

ω ∞→ Gfwd 0→
Gref Gdet Gfdm Gfdn Gin, , , , 0→ Gvco 1→

ω 0→ Gfwd ∞→ 1 jω⁄
Gref Gfdm Gfdn, , N→ Gin N M⁄→ Gvco 0→

ω 0→()
Sφvco

Sφvco
1 ω2⁄∼

H ω() 1∼ Gfwd 1 ω⁄∼
Gvco

2 SφvcoH ω() 1 ω⁄∼
Gfwd 1 ω2⁄∼
10 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Oscillators Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
2.3 Noise Model

One predicts the phase noise exhibited by a PLL by building and applying the model
shown in Figure 4. The first step in doing so is to find the various model parameters,
including the level of the noise sources, which generally involves either direct measure-
ment or simulating the various blocks with an RF simulator, such as SpectreRF. Use
periodic noise (or PNoise) analysis to predict the output noise that results from stochas-
tic noise sources contained within the blocks using simulation. Use a periodic AC or
periodic transfer function (PAC or PXF) to compute the perturbation at the output of a
block due to noise sources outside the block, such as on supplies.

Once the model parameters are known, it is simply a matter of computing the output
phase noise of the PLL by applying the equations in Section 2.2 to compute the contri-
butions to φout from every source and summing the results. Be careful to account for
correlations in the noise sources. If the noise sources are perfectly correlated, as they
might be if the ultimate source of noise is in the supplies or substrate, then use a direct
sum. If the sources produce completely uncorrelated noise, as they would when the ulti-
mate source of noise is random processes within the devices, use a root-mean-square
sum.

Alternatively, one could build a Verilog-A model and use simulation to determine the
result. The top-level of such a model is shown in Listing 1. It employs noisy phase-
domain models for each of the blocks. These models are given in Listings 3-7 and are
described in detail in the next few sections (3-6). In this example, the noise sources are
coded into the models, but the noise parameters are not set at the top level to simplify
the model. To predict the phase noise performance of the loop in lock, simply specify
these parameters in the block models (given later) along with the parameters of
Listing 1 and perform a noise analysis. To determine the effect of injected noise, first
refer the noise to the output of one of the blocks, and then add a source into the netlist of
Listing 1 at the appropriate place and perform an AC analysis.

Listings 1 and 3-7 have phase signals, and there is no phase discipline in the standard set
of disciplines provided by Verilog-A or Verilog-AMS in disciplines.vams. There are
several different resolutions for this problem. Probably the best solution is to simply add
such a discipline, given in Listing 2, either to disciplines.vams as assumed here or to a
separate file that is included as needed. Alternatively, one could use the rotational disci-
pline. It is a conservative discipline that includes torque as a flow nature, and so is over-
kill in this situation. Finally, one could simply use either the electrical or the voltage
discipline. Scaling for voltage in volts and phase in radians is similar, and so it will work
fine except that the units will be reported incorrectly. Using the rotational discipline
would require that all references to the phase discipline be changed to rotational in the
appropriate listings. Using either the electrical or voltage discipline would require that
both the name of the disciplines be changed from phase to either electrical or voltage,
and the name of the access functions be changed from Theta to V.

3 Oscillators

Oscillators are responsible for most of the noise at the output of the majority of well-
designed frequency synthesizers. This is because oscillators inherently tend to amplify
noise found near their oscillation frequency and any of its harmonics. The reason for
11 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Oscillators
this behavior is covered next, followed by a description of how to characterize and
model the noise in an oscillator. The origins of oscillator phase noise are described in a
conceptual way here. For a detailed description, see the papers by Käertner or Demir et
al [7,14,15].

3.1 Oscillator Phase Noise

Nonlinear oscillators naturally produce high levels of phase noise. To see why, consider
the trajectory of a fully autonomous oscillator’s stable periodic orbit in state space. In
steady state, the trajectory is a stable limit cycle, v. Now consider perturbing the oscilla-
tor with an impulse and assume that the deviation in the response due to the perturbation
is Δv, as shown in Figure 5. Separate Δv into amplitude and phase variations,

. (17)

where v represents the unperturbed T-periodic output voltage of the oscillator, α repre-
sents the variation in amplitude, φ is the variation in phase, and fo = 1/T is the oscillation
frequency.

LISTING 1 Phase-domain model for a PLL configured as a frequency synthesizer.

`include “disciplines.vams”

module pll(out);
output out;
phase out;
parameter integer m = 1 from [1:inf); // input divide ratio
parameter real Kdet = 1 from (0:inf); // phase detector gain
parameter real Kvco = 1 from (0:inf); // VCO gain
parameter real c1 = 1n from (0:inf); // Loop filter C1
parameter real c2 = 200p from (0:inf); // Loop filter C2
parameter real r = 10K from (0:inf); // Loop filter R
parameter integer n = 1 from [1:inf); // feedback divide ratio
phase in, ref, fb;
electrical c;

oscillator OSC(in);
divider #(.ratio(m)) FDm(in, ref);
phaseDetector #(.gain(Kdet)) PD(ref, fb, c);
loopFilter #(.c1(c1), .c2(c2), .r(r)) LF(c);
vco #(.gain(Kvco)) VCO(c, out);
divider #(.ratio(n)) FDn(out, fb);

endmodule

LISTING 2 Signal flow discipline definition for phase signals (the nature Angle is defined in
disciplines.vams). This definition is assumed to reside in a file named “phase.vams”.

`include “disciplines.vams”

discipline phase
potential Angle;

enddiscipline

Δv t() 1 α t()+[]v t
φ t()
2πfo
-----------+ 

  v t()–=
12 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Oscillators Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
Since the oscillator is stable and the duration of the disturbance is finite, the deviation in
amplitude eventually decays away and the oscillator returns to its stable orbit (α(t) → 0
as t → ∞). In effect, there is a restoring force that tends to act against amplitude noise.
This restoring force is a natural consequence of the nonlinear nature of the oscillator
that acts to suppresses amplitude variations.

The oscillator is autonomous, and so any time-shifted version of the solution is also a
solution. Once the phase has shifted due to a perturbation, the oscillator continues on as
if never disturbed except for the shift in the phase of the oscillation. There is no restor-
ing force on the phase and so phase deviations accumulate. A single perturbation causes
the phase to permanently shift (φ(t) → Δφ as t → ∞). If we neglect any short term time
constants, it can be inferred that the impulse response of the phase deviation φ(t) can be
approximated with a unit step s(t). The phase shift over time for an arbitrary input dis-
turbance u is

, (18)

or the power spectral density (PSD) of the phase is

(19)

This shows that in all oscillators the response to any form of perturbation, including
noise, is amplified and appears mainly in the phase. The amplification increases as the
frequency of the perturbation approaches the frequency of oscillation in proportion to 1/
Δf (or 1/Δf 2 in power).

Notice that there is only one degree of freedom — the phase of the oscillator as a whole.
There is no restoring force when the phase of all signals associated with the oscillator
shift together, however there would be a restoring force if the phase of signals shifted
relative to each other. This observation is significant in oscillators with multiple outputs,
such as quadrature or ring oscillators. The dominant phase variations appear identically
in all outputs, whereas relative phase variations between the outputs are naturally sup-
pressed by the oscillator or added by subsequent circuitry and so tend to be much
smaller [6].

FIGURE 5 The trajectory of an oscillator shown in state space with and without a perturbation Δv. By
observing the time stamps (t0, …, t6) one can see that the deviation in amplitude dissipates while
the deviation in phase does not.

v1

v2

t1 t1

t2
t2 t3

t3 t4

t4

t5

t5

t6

t6

Δφ6

t0

t0 Δv(0)

φ t() s t τ–()u τ() τd

∞–

∞

∼ u τ() τd

∞–

t

=

Sφ Δf()
Su Δf()

2πΔf()2
--------------------∼
13 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Oscillators
3.2 Characterizing Oscillator Phase Noise

Above it was shown that oscillators tend to convert perturbations from any source into a
phase variation at their output with an amplification that varies with 1/Δf (or 1/Δf 2 in
power). Now assume that the perturbation is from device noise in the form of white and
flicker stochastic processes. The oscillator’s response will be characterized first in terms
of the phase noise Sφ, and then because phase noise is not easily measured, in terms of
the normalized single-sideband noise power L. The result will be a small set of easily
extracted parameters that completely describe the response of the oscillator to white and
flicker noise sources. These parameters are used when modeling the oscillator.

Assume that the perturbation consists of white and flicker noise and so has the form

. (20)

Then from (19) the response will take the form

, (21)

where the factor of (2π)2 in the denominator of (19) has been absorbed into the constant
of proportionality n and Sφ is chosen to be the single-sided PSD4. Thus, the response of
the oscillator to white and flicker noise sources is characterized using just two parame-
ters, n and fc, where n is the portion of Sφ attributable to the white noise sources alone at
Δf = 1 Hz and fc is the flicker noise corner frequency.

As shown in Figure 6, n is extracted by simply extrapolating to 1 Hz from a frequency
where the noise from the white sources dominates.

Sφ is not directly observable and often difficult to find. So instead oscillator phase noise
is often characterized using L, the spot noise power of the output voltage Sv normalized

4. A single-sided PSD has a domain of 0 ≤ f < ∞. The double-sided PSD is also commonly used
and it has a domain of –∞ < f < ∞. They are related in that if SDS and SSS are the double- and
single-sided PSDs of a signal, then SDS(0) = SSS(0) and SDS(f) = ½SSS(f) for f ≠ 0.

FIGURE 6 Extracting the noise parameters, n and fc, for an oscillator from the single-sided power spectral
density of its phase noise. The graph is plotted on a log-log scale.

Su Δf() 1
fc

Δf
-----+∼

Sφ Δf() n
1

Δf 2

fc

Δf 3
---------+ 

 =

Sφ

Δf

2:1

3:1

Oscillator white noise sources dominate

Oscillator flicker noise sources dominate

External noise sources dominate

1 Hz

n

fc
14 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Oscillators Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
by the power in the fundamental tone. Sv is directly available from either measurement
with a spectrum analyzer or from RF simulators, and L is defined as

, (22)

where Sv is the single-sided PSD normalized to 1 V RMS5 and a1 and b1 are the Fourier
coefficients for the fundamental frequency components of v, the noise-free output sig-
nal. They satisfy

. (23)

In (41) of [7], Demir et al shows that for a free-running oscillator perturbed only by
white noise sources

, (24)

which is a Lorentzian process with corner frequency of

. (25)

The corner frequency is also known as the linewidth of the oscillator. At frequencies
well above fΔ and well below fo,

. (26)

Over this same range of frequencies, Vendelin [32] showed that

. (27)

The empirical constants c and n are related by using this equation to combine (21) and
(26).

(28)

This equation is valid only for Δf » fc, and so the flicker noise term can be ignored, giv-
ing

5. While Sv is a power-spectral density, it is important to understand that the units are not W/Hz.
In this case Sv has been normalized to 1 V RMS, meaning that the units are V2/Hz (dBV/Hz if
given in decibels) and that

is the total RMS power that would be dissipated if the signal were applied to a 1Ω resistor.

L Δ f()
2

a1
2 b1

2+
------------------Sv fo Δf+()=

Ptotal Sv f() fd
0

∞

=

v t() akcos 2πkfot() bksin 2πkfot()+

k 0=

∞

=

L Δf()
cf o

2

c2fo
4π2 Δf 2+

-------------------------------=

fΔ cf o
2π=

L Δ f()
cf o

2

Δf 2
---------=

L Δ f() 1
2
---Sφ Δ f()=

cfo
2

Δf 2
--------- n

2
--- 1

Δf 2

fc

Δf 3
---------+ 

 =
15 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Oscillators
. (29)

The parameters n, or alternatively c, and fc are used to describe the noise behavior of an
oscillator. To extract these parameters, start by measuring either L or Sφ for a range of
frequencies offset from the center frequency. If flicker noise is present, there will be a
range of low frequencies for which the noise power drops at a rate of 30 dB per decade.
Above this, the rate of drop will be 20 dB per decade. As shown in Figure 6, the fre-
quency at which the rate switches from 30 dB to 20 dB per decade is fc. Choose a fre-
quency Δf well above fc in the region where the noise is dropping at a rate of 20 dB per
decade and use either (21) or (26) and (29) to determine n.

3.3 Phase-Domain Models for the Oscillators

The phase-domain models for the reference and voltage-controlled oscillators are given
in Listings 3 and 4. The VCO model is based on (6). Perhaps the only thing that needs to
be explained is the way that phase noise is modeled in the oscillators. Verilog-AMS pro-
vides the flicker_noise function for modeling flicker noise, which has a power spectral
density proportional to 1/f α with α typically being close to 1. However, Verilog-AMS
does not limit α to being close to one, making this function well suited to modeling
oscillator phase noise, for which α is 2 in the white-phase noise region and close to 3 in
the flicker-phase noise region (at frequencies below the flicker noise corner frequency).
Alternatively, one could dispense with the noise parameters and use the noise_table
function in lieu of the flicker_noise functions to use the measured noise results directly.
The “wpn” and “fpn” strings passed to the noise functions are labels for the noise

sources. They are optional and can be chosen arbitrarily, though they should not contain
any white space or special characters. wpn was chosen to represent white phase noise
and fpn stands for flicker phase noise.

When interested in the effect of signals coupled into the oscillator through the supplies
or the substrate, one would compute the transfer function from the interfering source to
the phase output of the oscillator using either a PAC or PXF analysis. Again, one would
simply assume that the perturbation in the output of the oscillator is completely in the
phase, which is true except at very high offset frequencies. One then employs (12) and
(13) to predict the response at the output of the PLL.

LISTING 3 Phase-domain oscillator noise model.

`include “phase.vams” // from Listing 2, includes disciplines.vams.

module oscillator(out);
output out;
phase out;
parameter real n = 0 from [0:inf); // white output phase noise at 1 Hz (rad2/Hz)
parameter real fc = 0 from [0:inf); // flicker noise corner frequency (Hz)

analog begin
Theta(out) <+ flicker_noise(n, 2, “wpn”) + flicker_noise(n∗fc, 3, “fpn”);

end
endmodule

n 2cfo
2=
16 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Loop Filter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
4 Loop Filter

Even in the phase-domain model for the PLL, the loop filter remains in the voltage
domain and is represented with a full circuit-level model, as shown in Listing 5. As
such, the noise behavior of the filter is naturally included in the phase-domain model
without any special effort assuming that the noise is properly included in the resistor
model.

5 Phase Detector and Charge Pump

As with the VCO, the noise of the PFD/CP as needed by the phase-domain model is
found directly with simulation. Simply drive the block with a representative periodic
signal, perform a PNoise analysis, and measure the output noise current. In this case, a

LISTING 4 Phase-domain VCO noise model.

`include “phase.vams” // from Listing 2, includes disciplines.vams.
`include “constants.vams”

module vco(in, out);
input in; output out;
voltage in;
phase out;
parameter real gain = 1 from (0:inf); // transfer gain, Kvco (Hz/V)
parameter real n = 0 from [0:inf); // white output phase noise at 1 Hz (rad2/Hz)
parameter real fc = 0 from [0:inf); // flicker noise corner frequency (Hz)

analog begin
Theta(out) <+ 2∗`M_PI∗gain∗idt(V(in));
Theta(out) <+ flicker_noise(n, 2, “wpn”) + flicker_noise(n∗fc, 3, “fpn”);

end
endmodule

LISTING 5 Loop filter model.

`include “disciplines.vams”

module loopFilter(n);
electrical n, gnd;
ground gnd;†

parameter real c1 = 1n from (0:inf);
parameter real c2 = 200p from (0:inf);
parameter real r = 10K from (0:inf);
electrical int;

capacitor #(.c(c1)) C1(n, gnd);
capacitor #(.c(c2)) C2(n, int);
resistor #(.r(r)) R(int, gnd);

endmodule

† The ground statement was not previously supported in Cadence’s Verilog-A implemen-
tation, so instead ground should be explicitly passed into the module through a terminal.

n

C1
R2

C2
17 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Frequency Dividers
representative signal would be one that produced periodic switching in the PFD and CP.
This is necessary to capture the noise present during the switching process.

The noise in the PFD/CP comes from jitter in the PFD and noise in the output current of
the CP. The total noise produced by the CP will be proportional to how long it is on,
while the noise from the PFD will all be in the edges and so will be independent of how
long the CP is on. The CP itself has two current sources connected to its output, one that
pulls up and one that pulls down. Which one is activated depends on whether the edges
on the reference input lead or lag those on the feedback input. The time for which the
current source stays on is equal to the difference in arrival times for the edges. Most
PLLs operate in steady-state with the edges on the reference and feedback input occur-
ring almost simultaneously (because the loop gain of the PLL is infinite at DC). In addi-
tion, most phase detectors are what is known as ‘live zone’ phase detectors. With these,
when edges occur simultaneously on the reference and feedback inputs, both the pull up
and pull down current sources will turn on for a very short period of time. From an out-
put current perspective the pull up and pull down currents will act to cancel each other
and so the effective output current is zero, however both current sources will be contrib-
uting uncorrelated noise to the output while they are on. Thus it is best to characterize
the noise of the PFD/CP with simultaneous edges occurring on both the reference and
feedback inputs. The output should be connected to a current probe (often in the form of
an ideal voltage source) that is biased to present the expected voltage to the output of the
CP.

Generally the power spectral density of the output noise current appears as in Figure 7,
in which case the noise is parameterized with n and fc. n is the noise power density at
frequencies above the flicker noise corner frequency, fc, and below the noise bandwidth
of the circuit.

The phase-domain model for the PFD/CP is given in Listing 6. It is based on (3). Alter-
natively, as before one could use the noise_table function in lieu of the white_noise and
flicker_noise functions to use the measured noise results directly.

6 Frequency Dividers

There are several reasons why the process of extracting the noise produced by the fre-
quency dividers is more complicated than that needed for other blocks. First, the phase
noise is needed and, as of the time when this document was written, SpectreRF reports
on the total noise and does not yet make the phase noise available separately. Secondly,

FIGURE 7 Extracting the noise parameters, n and fc, for the PFD/CP from the power spectral density of its
output noise current. The graph is plotted on a log-log scale.

Sφ

f

White sources dominate

Flicker sources dominate

n
fc

1/T
18 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Frequency Dividers Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
the frequency dividers are always followed by some form of edge-sensitive thresholding
circuit, in this case the PFD, which implies that the overall noise behavior of the PLL is
only influenced by the noise produced by the divider at the time when the threshold is
being crossed in the proper direction. The noise produced by the frequency divider is
cyclostationary, meaning that the noise power varies over time. Thus, it is important to
analyze the noise behavior of the divider carefully. The second issue is discussed first.

6.1 Cyclostationary Noise.

Formally, the term cyclostationary implies that the autocorrelation function of a stochas-
tic process varies with t in a periodic fashion [9,28], which in practice is associated with
a periodic variation in the noise power of a signal. In general, the noise produced by all
of the nonlinear blocks in a PLL is strongly cyclostationary. To understand why, con-
sider the noise produced by a logic circuit, such as the inverter shown in Figure 8. The
noise at the output of the inverter, nout, comes from different sources depending on the
phase of the output signal, vout. When the output is high, the output is insensitive to
small changes on the input. The transistor MP is on and the noise at the output is pre-
dominantly due to the thermal noise from its channel. This is region A in the figure.
When the output is low, the situation is reversed and most of the output noise is due to
the thermal noise from the channel of MN. This is region B. When the output is transi-
tioning, thermal noise from both MP and MN contribute to the output. In addition, the
output is sensitive to small changes in the input. In fact, any noise at the input is ampli-
fied before reaching the output. Thus, noise from the input tends to dominate over the
thermal noise from the channels of MP and MN in this region. Noise at the input includes
noise from the previous stage and noise from both devices in the form of flicker noise
and thermal noise from gate resistance. This is region C in the figure.

The challenge in estimating the effect of noise passing through a threshold is the diffi-
culty in estimating the noise at the point where the threshold is crossed. There are sev-
eral different ways of estimating the effect of this noise, but the simplest is to use the
strobed noise feature of SpectreRF.6 When the strobed noise feature is active, the noise

LISTING 6 Phase-domain phase detector noise model.

`include “phase.vams” // from Listing 2, includes disciplines.vams.
`include “constants.vams”

module phaseDetector(pin, nin, out);
input pin, nin; output out;
phase pin, nin;
electrical out;
parameter real gain = 1 from (0:inf); // transfer gain (A/cycle)
parameter real n = 0 from [0:inf); // white output current noise (A2/Hz)
parameter real fc = 0 from [0:inf); // flicker noise corner frequency (Hz)

analog begin
I(out) <+ –gain ∗ Theta(pin,nin) / (2∗`M_PI);
I(out) <+ white_noise(n, “wpn”) + flicker_noise(n∗fc, 1, “fpn”);

end
endmodule

6. The strobed-noise feature of SpectreRF is also referred to as its time-domain noise feature.
19 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Frequency Dividers
produced by the circuit is periodically sampled to create a discrete-time random
sequence, as shown in Figure 9. SpectreRF then computes the power-spectral density of
the sequence. The sample time should be adjusted to coincide with the desired threshold
crossings. Since the T-periodic cyclostationary noise process is sampled every T sec-
onds, the resulting noise process is stationary. Furthermore, the noise present at times
other than at the sample points is completely ignored.

6.2 Converting to Phase Noise

The act of converting the noise from a continuous-time process to a discrete-time pro-
cess by sampling at the threshold crossings makes the conversion into phase noise eas-
ier. If vn is the continuous-time noisy response, and v is the noise-free response
(response with the noise sources turned off), then7

ni = vn(iT) – v(iT). (30)

Then if vn is noisy because it is corrupted with a phase noise process φ, then

FIGURE 8 Noise produced by an inverter (nout) as a function of the output signal (vout). In region A the noise
is dominated by the thermal noise of MP, in region B its dominated by the thermal noise of MN,
and in region C the output noise includes the thermal noise from both devices as well as the
amplified noise from the input.

FIGURE 9 Strobed noise. The lower waveform is a highly magnified view of the noise present at the strobe
points in vn, which are chosen to coincide with the threshold crossings in v.

MP

MN

outin

vout

nout

A
C C

B B

t

t

vn(t)

t

t
ni
20 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Frequency Dividers Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
. (31)

Assume the phase noise φ is small and linearize v using a Taylor series expansion

(32)

and

. (33)

Finally, φi can be found from ni using

. (34)

v is T periodic, which makes dv(iT)/dt a constant, and so

. (35)

where Sn(f) and Sφ(f) are the power spectral densities of the ni and φi sequences.

6.3 Phase-Domain Model for Dividers

To extract the phase noise of a divider, drive the divider with a representative periodic
input signal and perform a PSS analysis to determine the threshold crossing times and
the slew rate (dv/dt) at these times. Then use SpectreRF’s strobed PNoise analysis to
compute Sn(f). When running PNoise analysis, assure that the maxsideband parameter
is set sufficiently large to capture all significant noise folding. A large value will slow
the simulation. To reduce the number of sidebands needed, use T as small as possible.
Sφ(f) is then computed from (35). Figure 10 shows the various attributes of the phase
noise at the output of the divider. Notice that the noise is periodic in f with period 1/T
because n is a discrete-time sequence with period T. The parameters n and fc for the
divider are extracted as illustrated.

With ripple counters, one usually only characterizes one stage at a time and combines
the phase noise from each stage by assuming that the noise in each stage is independent
(true for device noise, would not be true for noise coupling into the divider from exter-
nal sources). The variation due to phase noise accumulates, however it is necessary to
account for the increasing period of the signals at each stage along the ripple counter.
Consider an intermediate stage of a K-stage ripple counter. The total phase noise at the
output of the ripple counter that results due to the phase noise at the output of stage
k is (Tk/TK)2 . So the total phase noise at the output of the ripple counter is

7. It is assumed that the sequence ni is formed by sampling the noise at iT, which implies that the
threshold crossings also occur at iT. In practice, the crossings will occur at some time offset
from iT. That offset is ignored. It is done without loss of generality with the understanding that
the functions v and vn can always be reformulated to account for the offset.

vn t() v t
φ t()
2πf0
-----------+ 

 =

vn t() v t() dv t()
dt

------------ φ t()
2πf0
-----------+≅

ni v iT() dv iT()
dt

----------------φ iT()
2πf0
------------ v iT()–+≅ dv iT()

dt
----------------φ iT()

2πf0
------------=

φi 2πf0ni
dv iT()

dt
----------------⁄=

Sφ f() 2πf0
dv iT()

dt
----------------⁄

2
Sn f()=

SφkSφk
21 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Frequency Dividers
(36)

where and T0 are the phase noise and signal period at the input to the first stage of
the ripple counter.

With undesired variations in the supplies or in the substrate the resulting phase noise in
each stage would be correlated, so one would need to compute the transfer function
from the signal source to the phase noise of each stage and combine in a vector sum.

Unlike in ripple counters, phase noise does not accumulate with each stage in synchro-
nous counters. Phase noise at the output of a synchronous counter is independent of the
number of stages and consists only of the noise of its clock along with the noise of the
last stage.

The phase-domain model for the divider, based on (2), is given in Listing 7. As before,
one could use the noise_table function in lieu of the white_noise and flicker_noise func-
tions to use the measured noise results directly.

FIGURE 10 Extracting the noise parameters, n and fc, for the divider from the power spectral density of its
phase noise. The graph is plotted on a log-log scale.

LISTING 7 Phase-domain divider noise model.

`include “phase.vams” // from Listing 2, includes disciplines.vams.

module divider(in, out);
input in; output out;
phase in, out;
parameter real ratio = 1 from (0:inf); // divide ratio
parameter real n = 0 from [0:inf); // white output phase noise (rads2/Hz)
parameter real fc = 0 from [0:inf); // flicker noise corner frequency (Hz)

analog begin
Theta(out) <+ Theta(in) / ratio;
Theta(out) <+ white_noise(n, “wpn”) + flicker_noise(n∗fc, 1, “fpn”);

end
endmodule

Sφ

f

White sources dominate

Flicker sources dominate

n
fc

1/T

Sφout

1

TK
2

------- Tk
2Sφk

k 0=

K

=

Sφ0
22 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Fractional-N Synthesis Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
7 Fractional-N Synthesis

One of the drawbacks of a traditional frequency synthesizer, also known as an integer-N
frequency synthesizer, is that the output frequency is constrained to be N times the refer-
ence frequency. If the output frequency is to be adjusted by changing N, which is con-
strained by the divider to be an integer, then the output frequency resolution is equal to
the reference frequency. If fine frequency resolution is desired, then the reference fre-
quency must be small. This in turn limits the loop bandwidth as set by the loop filter,
which must be at least 10 times smaller than the reference frequency to prevent signal
components at the reference frequency from reaching the input of the VCO and modu-
lating the output frequency, creating spurs or sidebands at an offset equal to the refer-
ence frequency and its harmonics. A low loop bandwidth is undesirable because it limits
the response time of the synthesizer to changes in N. In addition, the loop acts to sup-
press the phase noise in the VCO at offset frequencies within its bandwidth, so reducing
the loop bandwidth acts to increase the total phase noise at the output of the VCO.

The constraint on the loop bandwidth imposed by the required frequency resolution is
eliminated if the divide ratio N is not limited to be an integer. This is the idea behind
fractional-N synthesis. In practice, one cannot directly implement a frequency divider
that implements non-integer divide ratio except in a few very restrictive cases, so
instead a divider that is capable of switching between two integer divide ratios is used,
and one rapidly alternates between the two values in such a way that the time-average is
equal to the desired non-integer divide ratio [31]. A block diagram for a fractional-N
synthesizer is shown in Figure 11. Divide ratios of N and N + 1 are used, where N is the
first integer below the desired divide ratio, and N + 1 is the first integer above. For
example, if the desired divide ratio is 16.25, then one would alternate between the ratios
of 16 and 17, with the ratio of 16 being used 75% of the time. Early attempts at frac-
tional-N synthesis alternated between integer divide ratios in a repetitive manner, which
resulted in noticeable spurs in the VCO output spectrum. More recently, ΔΣ modulators
have been used to generate a random sequence with the desired duty cycle to control the
multi-modulus dividers [30]. This has the effect of trading off the spurs for an increased
noise floor, however the ΔΣ modulator can be designed so that most of the power in its
output sequence is at frequencies that are above the loop bandwidth, and so are largely
rejected by the loop.

The phase-domain small-signal model for the combination of a fractional-N divider and
a ΔΣ modulator is given in Listing 8. It uses the noise_table function to construct a sim-
ple piece-wise linear approximation of the noise produced in an nth order ΔΣ modulator

FIGURE 11 The block diagram of a fractional-N frequency synthesizer.

OSC
PFD CP LF VCO

FD
÷N, N+1

fref

ffb

fout

Mod
23 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Jitter
that is parameterized with the low frequency noise generated by the modulator, along
with the corner frequency and the order.

8 Jitter

The signals at the input and output of a PLL are often binary signals, as are many of the
signals within the PLL. The noise on binary signals is commonly characterized in terms
of jitter.

Jitter is an undesired perturbation or uncertainty in the timing of events. Generally, the
events of interest are the transitions in a signal. One models jitter in a signal by starting
with a noise-free signal v and displacing time with a stochastic process j. The noisy sig-
nal becomes

(37)

with j assumed to be a zero-mean process and v assumed to be a T-periodic function. j
has units of seconds and can be interpreted as a noise in time. Alternatively, it can be
reformulated as a noise is phase, or phase noise, using

φ(t) = 2πfo j(t), (38)

where fo = 1/T and

. (39)

LISTING 8 Phase-domain fractional-N divider model.

`include “phase.vams” // from Listing 2, includes disciplines.vams.

module divider(in, out);
input in; output out;
phase in, out;
parameter real ratio = 1 from (0:inf); // divide ratio
parameter real n = 0 from [0:inf); // white output phase noise (rads2/Hz)
parameter real bw = 1 from (0:inf); // ΔΣ modulator bandwidth
parameter integer order = 1 from (0:9); // ΔΣ modulator order
parameter real fmax = 10∗bw from (bw:inf); // maximum frequency of concern

analog begin
Theta(out) <+ Theta(in) / ratio;
Theta(out) <+ noise_table({

0, n,
bw, n,
fmax, n∗pow((fmax/bw), 2∗order)

}, “dsn”));
end
endmodule

vn t() v t j t()+()=

vn t() v t
φ t()
2πfo
-----------+ 

 =
24 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
8.1 Jitter Metrics

Define {ti} as the sequence of times for positive-going threshold crossings, henceforth
referred to as transitions, that occur in vn. Various jitter metrics characterize the statis-
tics of this sequence.8

The simplest metric is the edge-to-edge jitter, Jee, which is the variation in the delay
between a triggering event and a response event. When measuring edge-to-edge jitter, a
clean jitter-free input is assumed, and so the edge-to-edge RMS jitter Jee is

. (40)

Edge-to-edge jitter assumes an input signal, and so is only defined for driven systems. It
is an input-referred jitter metric, meaning that the jitter measurement is referenced to a
point on a noise-free input signal, so the reference point is fixed. No such signal exists
in autonomous systems. The remaining jitter metrics are suitable for both driven and
autonomous systems. They gain this generality by being self-referred, meaning that the
reference point is on the noisy signal for which the jitter is being measured. These met-
rics tend to be a bit more complicated because the reference point is noisy, which acts to
increase the measured jitter.

Edge-to-edge jitter is also a scalar jitter metric, and it does not convey any information
about the correlation of the jitter between transitions. The next metric characterizes the
correlations between transitions as a function of how far the transitions are separated in
time.

Define Jk(i) to be the standard deviation of ti+k – ti,

. (41)

Jk(i) is referred to as k-cycle jitter or long-term jitter 9. It is a measure of the uncertainty
in the length of k cycles and has units of time. J1, the standard deviation of the length of
a single period, is often referred to as the period jitter, and it denoted J, where J = J1.

Another important jitter metric is cycle-to-cycle jitter. Define Ti = ti+1 – ti to be the
period of cycle i. Then the cycle-to-cycle jitter Jcc is

. (42)

Cycle-to-cycle jitter is a metric designed to identify large adjacent cycle displacements.
It is like edge-to-edge jitter in that it is a scalar jitter metric that does not contain infor-
mation about the correlation in the jitter between distant transitions. However, it differs
in that it is a measure of short-term jitter that is relatively insensitive to long-term jitter
[13]. As such, cycle-to-cycle jitter is the only jitter metric that is suitable for use when
flicker noise is present. All other metrics are unbounded in the presence of flicker noise.

If j(t) is either stationary or T-cyclostationary, then the sequence {ti} is stationary, mean-
ing that these metrics do not vary with i, and so Jee(i), Jk(i), and Jcc(i) can be shortened
to Jee, Jk, and Jcc.

8. There is some variability in the jitter metrics that are used and their definitions. The work by
Lee documents some other ways of characterizing jitter [22].

9. Some people distinguish between k-cycle jitter and long-term jitter by defining the long-term
jitter J∞ as being the k-cycle jitter Jk as k → ∞.

Jee i() var ti()=

Jk i() var ti k+ ti–()=

Jcc i() var Ti 1+ Ti–()=
25 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Jitter
These jitter metrics are illustrated in Figure 12.

8.1.1 RMS versus Peak-to-Peak Jitter

All the jitter metrics given so far have been RMS metrics. If you assume that the noise
sources have Gaussian distributions, then strictly speaking the metrics do not have peak-
to-peak values because the noise is unbounded. However, one can define the peak-to-
peak jitter as the magnitude that the jitter exceeds only a for specified fraction of the
time, known as the error rate [24]. Once the acceptable error rate is specified, then it
can converted to α using Table 1, which is the ratio between the peak-to-peak deviation
and the standard deviation. Then the RMS jitter can be converted to peak-to-peak jitter
using

JPP = αJRMS. (43)

FIGURE 12 The various jitter metrics.

TABLE 1 The ratio of the peak-to-peak deviation of a Gaussian process to its standard deviation where the
peak-to-peak deviation is defined as the magnitude that is not exceeded more often than the given
error rate.

Error Rate α

10–3 6.180

10–4 7.438

10–5 8.530

10–6 9.507

10–7 10.399

10–8 11.224

10–9 11.996

10–10 12.723

10–11 13.412

10–12 14.069

δti
Jee i() var δti()=

edge-to-edge jitter

ti ti+kk cycles

Jk i() var ti k+ ti–()=

k-cycle jitter

Ti Ti+1

Jcc i() var Ti 1+ Ti–()=

cycle-to-cycle jitter
26 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Synchronous Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
8.2 Types of Jitter

The type of jitter produced in PLLs can be classified as being from one of two canonical
forms. Blocks such as the PFD, CP, and FD are driven, meaning that a transition at their
output is a direct result of a transition at their input. The jitter exhibited by these blocks
is referred to as synchronous jitter, it is a variation in the delay between when the input
is received and the output is produced. Blocks such as the OSC and VCO are autono-
mous. They generate output transitions not as a result of transitions at their inputs, but
rather as a result of the previous output transition. The jitter produced by these blocks is
referred to as accumulating jitter, it is a variation in the delay between an output transi-
tion and the subsequent output transition. Table 2 previews the basic characteristics of
these two types of jitter. The formulas for jitter given in this table are derived in the next
two sections.

9 Synchronous Jitter

Synchronous jitter is exhibited by driven systems. In the PLL, the PFD/CP and FDs
exhibit synchronous jitter. In these components, an output event occurs as a direct result
of, and some time after, an input event. It is an undesired fluctuation in the delay
between the input and the output events. If the input is a periodic sequence of transi-
tions, then the frequency of the output signal is exactly that of the input, but the phase of
the output signal fluctuates with respect to that of the input. The jitter appears as a mod-
ulation of the phase of the output, which is why it is sometimes referred to as phase
modulated or PM jitter.

Let η be a stationary or T-cyclostationary process, then

(44)

10–13 14.698

10–14 15.301

10–15 15.883

10–16 16.444

TABLE 2 The two canonical forms of jitter.

Jitter Type Circuit Type Jitter

synchronous driven (PFD/CP, FD)

accumulating autonomous (OSC, VCO)

TABLE 1 The ratio of the peak-to-peak deviation of a Gaussian process to its standard deviation where the
peak-to-peak deviation is defined as the magnitude that is not exceeded more often than the given
error rate.

Error Rate α

Jee

var nv tc()()
vd tc() dt⁄

-------------------------------=

J cT=

jsync t() η t()=
27 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Synchronous Jitter
(45)

exhibits synchronous jitter. If η is further restricted to be a white Gaussian stationary or
T-cyclostationary process, then vn(t) exhibits simple synchronous jitter. The essential
characteristic of simple synchronous jitter is that the jitter in each event is independent
or uncorrelated from the others, and (38) shows that it corresponds to white phase noise.
Driven circuits exhibit simple synchronous jitter if they are broadband and if the noise
sources are white, Gaussian and small. The sources are considered small if the circuit
responds linearly to the noise, even though at the same time the circuit may be respond-
ing nonlinearly to the periodic drive signal.

For systems that exhibit simple synchronous jitter, from (40),

. (46)

Similarly, from (41), k cycle jitter is

, (47)

, (48)

. (49)

Since jsync(t) is T-cyclostationary jsync(ti) is independent of i, and so is Jee and Jk.

, and (50)

. (51)

The factor of in (51) stems from the length of an interval including the independent
variation from two transitions. From (51), Jk is independent of k, and so

. (52)

The approach is similar for cycle-to-cycle jitter. From (42),

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

vn t() v t jsync t()+()=

Jee i() var jsync ti()()=

Jk i() var ti k+ ti–()=

Jk i() var i k+()T j+ sync ti k+()[] iT jsync ti()+[]–()=

Jk i() var jsync ti k+()() var jsync ti()()+=

Jk i() 2var jsync()=

Jk i() 2Jee=

2

Jk J for = k 1 2 …, ,=

Jcc i() var Ti 1+ Ti–()=

Jcc i() var ti 1+ ti–[] ti ti 1––[]–()=

Jcc i() var ti 1+ 2ti– ti 1–+()=

Jcc i() var i k+()T j+ sync ti k+()[] 2 iT jsync ti()+[]– i k–()T j+ sync ti k–()[]+()=

Jcc i() var jsync ti k+()() var 2jsync ti()() var jsync ti k–()()+ +=

Jcc i() var jsync ti k+()() 4var jsync ti()() var jsync ti k–()()+ +=

Jcc i() 6var jsync()=

Jcc i() 6Jee=
28 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Synchronous Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
Generally, the jitter produced by the PFD/CP and FDs is well approximated by simple
synchronous jitter if one can neglect flicker noise.

9.1 Extracting Synchronous Jitter

The jitter in driven blocks, such as the PFD/CP or FDs, occurs because of an interaction
between noise present in the blocks and the thresholds that are inherent to logic circuits.

In systems where signals are continuous valued, an event is usually defined as a signal
crossing a threshold in a particular direction. The threshold crossings of a noiseless peri-
odic signal, v(t), are precisely evenly spaced. However, when noise is added to the sig-
nal, vn(t) = v(t) + nv(t), each threshold crossing is displaced slightly. Thus, a threshold
converts additive noise to synchronous jitter.

The amount of displacement in time is determined by the amplitude of the noise signal,
nv(t) and the slew rate of the periodic signal, dv(tc)/dt, as the threshold is crossed, as
shown in Figure 13 [35]. If the noise nv is stationary, then

(61)

where tc is the time of a threshold crossing in v (assuming the noise is small).

Generally nv is not stationary, but cyclostationary (refer back to Section 6.1). It is only
important to know when the noisy periodic signal vn(t) crosses the threshold, so the sta-
tistics of nv are only significant at the time when vn(t) crosses the threshold,

. (62)

The jitter is computed from (46) using (61) or (62),

. (63)

To compute var(nv(tc)), one starts by driving the circuit with a representative periodic
signal, and then sampling v(t) at intervals of T to form the ergodic sequence {v(ti)}
where ti = tc for some i. Then the variance is computed by computing the power spectral

FIGURE 13 How a threshold converts noise into jitter.

var jsync tc()()
var nv()

vd tc() dt⁄[]2
------------------------------≅

Jitter Histogram

Noise

Δt

Δv
tc

Threshold
Histogram

var jsync tc()()
var nv tc()()

vd tc() dt⁄[]2
------------------------------=

Jee

var nv tc()()

vd tc() dt⁄
-----------------------------=
29 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Synchronous Jitter
density for the sequence by integrating from f = –fo/2 to fo/2. Recall that the noise is
periodic in f with period fo = 1/T because n is a discrete-time sequence with rate T.

In practice, this is done by using the strobed noise capability of SpectreRF10 to compute
the power spectral density of the sequence. When the strobed noise feature is active, the
noise produced by the circuit is periodically sampled to create a discrete-time random
sequence, as shown in Figure 9. SpectreRF then computes the power-spectral density of
the sequence. The sample time should be adjusted to coincide with the desired threshold
crossings. Since the T-periodic cyclostationary noise process is sampled every T sec-
onds, the resulting noise process is stationary. Furthermore, the noise present at times
other than at the sample points is completely ignored.

9.1.1 Extracting the Jitter of Dividers

To extract the jitter of a divider, drive the divider with a representative periodic input
signal and perform a PSS analysis to determine the threshold crossing times and the
slew rate (dv/dt) at these times. Then use SpectreRF’s strobed PNoise analysis to com-
pute Sn(f). The sample point should be set to coincide with the point where the output
signal crosses the threshold of the subsequent stage (the phase detector) in the appropri-
ate direction. When running PNoise analysis, assure that the maxsideband parameter is
set sufficiently large to capture all significant noise folding. A large value will slow the
simulation. To reduce the number of sidebands needed, use T as small as possible. Spec-
treRF computes the power spectral density , which is integrated to compute the total
noise at the sample points,

. (64)

Then Jee is computed from (63).

With ripple counters, one usually only characterizes one stage at a time. The total jitter
due to noise in the ripple counter is then computed by assuming that the jitter in each
stage is independent (again, this is true for device noise, but not for noise coupling into
the divider from external sources) and taking the square-root of the sum of the square of
the jitter on each stage.

Unlike in ripple counters, jitter does not accumulate with synchronous counters. Jitter in
a synchronous counter is independent of the number of stages and consists only of the
jitter of its clock along with the jitter of the last stage.

9.1.2 Extracting the Jitter of the Phase Detector

The PFD/CP is not followed by a threshold. Rather, it feeds into the LF, which is sensi-
tive to the noise emitted by the CP at all times, not just during transitions. This argues
that the noise of the PFD/CP be modeled as a continuous noise current. However, as
mentioned earlier, doing so is problematic for simulators and would require very tight
tolerances and small time steps. So instead, the noise of the PFD/CP is referred back to
its inputs. The inputs of the PFD/CP are edge triggered, so the noise can be referred
back as jitter.

10.The strobed-noise feature of SpectreRF is also referred to as its time-domain noise feature.

Snv

var nv tc()() Snv
f tc,()df

0

fo 2⁄

=
30 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Accumulating Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
To extract the input-referred jitter of a PFD/CP, drive both inputs with periodic signals
with offset phase so that the PFD/CP produces a representative output. Use SpectreRF’s
PNoise analysis to compute the output noise over the total bandwidth of the PFD/CP (in
this case, use the conventional noise analysis rather than the strobed noise analysis).
Choose the frequency range of the analysis so that the total noise at frequencies outside
the range is negligible. Thus, the noise should be at least 40 dB down and dropping at
the highest frequency simulated. Integrate the noise over frequency and apply Wiener-
Khinchin Theorem [27] to determine

, (65)

the total output noise current squared [9]. Then either calculate or measure the effective
gain of the PFD/CP, Kdet, in units of amperes per cycle. Scale the gain so that it has the
units of amperes per second by dividing Kdet by the period T seconds per cycle. Then
divide the total output noise current by this gain and account for there being two transi-
tions per cycle to distribute the noise over to determine the input-referred jitter for the
PFD/CP,

. (66)

As before, when running PNoise analysis, assure that the maxsideband parameter is set
sufficiently large to capture all significant noise folding. A large value will slow the
simulation. To reduce the number of sidebands needed, use T as small as possible.

10 Accumulating Jitter

Accumulating jitter is exhibited by autonomous systems, such as oscillators, that gener-
ate a stream of spontaneous output transitions. In the PLL, the OSC and VCO exhibit
accumulating jitter. Accumulating jitter is characterized by an undesired variation in the
time since the previous output transition, thus the uncertainty of when a transition
occurs accumulates with every transition. Compared with a jitter free signal, the fre-
quency of a signal exhibiting accumulating jitter fluctuates randomly, and the phase
drifts without bound. Thus, the jitter appears as a modulation of the frequency of the
output, which is why it is sometimes referred to as frequency modulated or FM jitter.

Again assume that η be a stationary or T-cyclostationary process, then

(67)

(68)

exhibits accumulating jitter. While η is cyclostationary and so has bounded variance,
(67) shows that the variance of jacc, and hence the phase difference between v(t) and
vn(t), is unbounded.

If η is further restricted to be a white Gaussian stationary or T-cyclostationary random
process, then vn exhibits simple accumulating jitter. In this case, the process {j acc(iT)}
that results from sampling j acc every T seconds is a discrete Wiener process and the

var n() Sn f()df
0

∞

=

JeePFD/CP

T
Kdet
---------- var n()

2
---------------=

jacc t() η τ() τd
0

t

=

vn t() v t jacc t()+()=
31 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Accumulating Jitter
phase difference between v(iT) and vn(iT) is a random walk [9]. As shown next, simple
accumulating jitter corresponds to oscillator phase noise that results from white noise
sources.

The essential characteristic of simple accumulating jitter is that the incremental jitter
that accumulates over each cycle is independent or uncorrelated. Autonomous circuits
exhibit simple accumulating jitter if they are broadband and if the noise sources are
white, Gaussian and small. The sources are considered small if the circuit responds lin-
early to the noise, though at the same time the circuit may be responding nonlinearly to
the oscillation signal. An autonomous circuit is considered broadband if there are no
secondary resonant responses close in frequency to the primary resonance.11

For systems that exhibit simple accumulating jitter, each transition is relative to the pre-
vious transition, and the variation in the length of each period is independent, so the
variance in the time of each transition accumulates,

, (69)

where

. (70)

Similarly,

. (71)

Generally, the jitter produced by the OSC and VCO are well approximated by simple
accumulating jitter if one can neglect flicker noise.

10.1 Extracting Accumulating Jitter

The jitter in autonomous blocks, such as the OSC or VCO, is almost completely due to
oscillator phase noise. Oscillator phase noise is a variation in the phase of the oscillator
as it proceeds along its limit cycle.

In order to determine the period jitter J of vn(t) for a noisy oscillator, assume that it
exhibits simple accumulating jitter so that η in (67) is a white Gaussian T-cyclostation-
ary noise process (this excludes flicker noise) with a single-sided PSD of

, (72)

and an autocorrelation function of

, (73)

where δ is a Dirac delta function. Then

11.Oscillators are strongly nonlinear circuits undergoing large periodic variations, and so signals
within the oscillator freely mix up and down in frequency by integer multiples of the oscilla-
tion frequency. For this reason, any low frequency time constants or resonances in supply or
bias lines would effectively act like close-in secondary resonances. In fact, this is the most
likely cause of such phenomenon.

Jk k= J for k 0 1 2 …, , ,=

J var jacc ti T+() jacc ti()–()=

Jcc 2J=

Sη f() 2c=

Rη t1 t2,() cδ t1 t2–()=
32 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Accumulating Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
(74)

is a Wiener process [9], which has an autocorrelation function of

. (75)

The period jitter is the standard deviation of the variation in one period, and so

. (76)

(77)

(78)

(79)

(80)

(81)

, (82)

which agrees with Demir [7]. We now have a way of relating the jitter of the oscillator
to the PSD of η. However, η is not measurable, so instead the jitter is related to the
phase noise Sφ. To do so, consider simple accumulating jitter written in terms of phase,

, (83)

where fo = 1/T. From (72) and (83) the PSD of φacc is

. (84)

From (27)

, (85)

, (86)

which, of course, is consistent with (26). Determine c by choosing Δf well above the
corner frequency (fc) to avoid ambiguity and well below fo to avoid the noise from other
sources that occur at these frequencies.

10.1.1 Example

To compute the jitter of an oscillator, an RF simulator such as SpectreRF is used to find
L and fo of the oscillator. Given these, c is found with (86), J is found with (82) and Jk is
found with (69). This procedure is demonstrated for the oscillator shown in Figure 14.

jacc t() ηT τ() τd
0

t

=

Rjacc
t1 t2,() c min t1 t2,()=

J2 var jacc t T+() jacc t()–()=

J2 E jacc t T+() jacc t()–()2[]=

J2 E jacc t T+()2 2jacc t T+()jacc t() j+
acc

t()– 2[]=

J2 E jacc t T+()2[] 2E jacc t T+()jacc t()[]– E jacc t()2[]+=

J2 Rjacc
t T t T+,+() 2Rjacc

t T t,+() Rjacc
t t,()+–=

J2 c t T+() 2ct– ct+=

J cT=

φacc t() 2πfo jacc t() 2πfo η τ() τd
0

t

= =

Sφacc
Δf() 2c

2πfo()2

2πΔf()2

2cfo
2

Δf 2
-----------= =

L Δ f() 1
2
---Sφacc

Δf()
cfo

2

Δf 2
---------= =

c L Δf()Δf 2

fo
2

---------=
33 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Jitter of a PLL
This is a very low noise oscillator designed in 0.35μ CMOS by Rael and Abidi [29]. The
frequency of oscillation is 1.1 GHz and the resonator has a loaded Q of 6.

The procedure starts by using an RF simulator such as SpectreRF to compute the nor-
malized phase noise L. Its PNoise analysis is used, with the maxsideband parameter set
to at least 10 to adequately account for noise folding within the oscillator.12 In this case,
L = –110 dBc at 100 kHz offset from the carrier. Apply (86) to compute c from L,

(87)

where L(Δ f) = 10–11, Δf = 100 kHz, and fo = 1.1 GHz, which gives c = 82.6 × 10–21. The
period jitter J is then computed from (82),

. (88)

In this example, the noise was extracted for the VCO alone. In practice, the LF is gener-
ally combined with the VCO before extracting the noise so that the noise of the LF is
accounted for.

11 Jitter of a PLL

If a PLL synthesizer is constructed from blocks that exhibit simple synchronous and
accumulating jitter, then the jitter behavior of the PLL is relatively easy to estimate [25].
Assume that the PLL has a closed-loop bandwidth of fL, and that τL = 1/2πfL, then for k
such that , jitter from the VCO dominates and the PLL exhibits simple accumu-
lating jitter equal to that produced by the VCO. Similarly, at large k (low frequencies),
the PLL exhibits simple accumulating jitter equal to that produced by the OSC. Between
these two extremes, the PLL exhibits simple synchronous jitter. The amount of which
depends on the characteristics of the loop and the level of synchronous jitter exhibited
by the FDs and the PFD/CP. The behavior of such a PLL is shown in Figure 15.

FIGURE 14 Differential LC oscillator.

12.At one point it was mistakenly suggested in the documentation for SpectreRF that maxside-
band should be set to 0 for oscillators. This causes SpectreRF to ignore all noise folding and
results in a significant underestimation of the total noise.

PN

M1 M2
C2C1

L2L1

IDD

c L Δ f()
Δf 2

fo
2

---------=

J cT c
fo
---- 82.6 10 21–×

1.1 GHz
------------------------------ 8.7 fs= = = =

kT τL«
34 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Modeling a PLL with Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
12 Modeling a PLL with Jitter

The basic behavioral models for the blocks that make up a PLL are well known and so
are not discussed here in any depth [2,3]. Instead, only the techniques for adding jitter to
the models are discussed.

Jitter is modeled in an AHDL by dithering the time at which events occur. This is effi-
cient because it does not create any additional activity, rather it simply changes the time
when existing activity occurs. Thus, models with jitter can run as efficiently as those
without.

12.1 Modeling Driven Blocks

A feature of Verilog-A allows especially simple modeling of synchronous jitter. The
transition() function, which is used to model signal transitions between discrete levels,
provides a delay argument that can be dithered on every transition. The delay argument
must not be negative, so a fixed delay that is greater than the maximum expected devia-
tion of the jitter must be included. This approach is suitable for any model that exhibits
synchronous jitter and generates discrete-valued outputs. It is used in the Verilog-A
divider module shown in Listing 9, which models synchronous jitter with (45) where
j sync is a stationary white discrete-time Gaussian random process. It is also used in
Listing 10, which models a simple PFD/CP.

12.1.1 Frequency Divider Model

The model, given in Listing 9, operates by counting input transitions. This is done in the
@cross block. The cross function triggers the @ block at the precise moment when its
first argument crosses zero in the direction specified by the second argument. Thus, the
@ block is triggered when the input crosses the threshold in the user specified direction.
The body of the @ block increments the count, resets it to zero when it reaches ratio,
then determines if count is above or below its midpoint (n is zero if the count is below
the midpoint). It also generates a new random dither dT that is used later. Outside the @
block is code that executes continuously. It processes n to create the output. The value
of the ?: operator is Vhi if n is 1 and Vlo if n is 0. Finally, the transition function adds a
finite transition time of tt and a delay of td + dt. The finite transition time removes the
discontinuities from the signal that could cause problems for the simulator. The jitter is
embodied in dt, which varies randomly from transition to transition. To avoid negative
delays, td must always be larger than dt. This model expects jitter to be specified as Jee,
as computed with (63).

FIGURE 15 Long-term jitter (Jk) for an idealized PLL as a function of the number of cycles.

J

log(Jk)

log(k)

Accumulating jitter

Synchronous jitter from

Accumulating jitter

fLT0

from OSC

from VCO

PFD/CP, FDs
35 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Modeling a PLL with Jitter
12.1.2 PFD/CP Model

The model for a phase/frequency detector combined with a charge pump is given in
Listing 10. It implements a finite-state machine with a three-level output, –Iout, 0 and
+Iout. On every transition of the VCO input in direction dir, the output is incremented.
On every transition of the reference input in the direction dir, the output is decremented.
If both the VCO and reference inputs are at the same frequency, then the average value
of the output is proportional to the phase difference between the two, with the average
being negative if the reference transition leads the VCO transition and positive other-
wise [8]. As before, the times of the output transitions are randomly dithered by dt to
model jitter. The output is modeled as an ideal current source and a finite transition time
provides a simple model of the dead band in the CP.

12.2 Modeling Accumulating Jitter

12.2.1 OSC Model

The delay argument of the transition() function cannot be used to model accumulating
jitter because of the unbounded nature of this type of jitter. When modeling a fixed fre-

LISTING 9 Frequency divider that models synchronous jitter.

`include “disciplines.vams”

module divider (out, in);

input in; output out; electrical in, out;

parameter real Vlo=–1, Vhi=1;
parameter integer ratio=2 from [2:inf);
parameter integer dir=1 from [–1:1] exclude 0; // dir=1 for positive edge trigger

// dir=–1 for negative edge trigger
parameter real tt=1n from (0:inf);
parameter real td=0 from (0:inf);
parameter real jitter=0 from [0:td/5); // edge-to-edge jitter
parameter real ttol=1p from (0:td/5); // recommend ttol << jitter

integer count, n, seed;
real dt;

analog begin
@(initial_step) seed = –311;

@(cross(V(in) – (Vhi + Vlo)/2, dir, ttol)) begin
// count input transitions
count = count + 1;
if (count >= ratio)

count = 0;
n = (2∗count >= ratio);
// add jitter
dt = jitter∗$rdist_normal(seed,0,1);

end

V(out) <+ transition(n ? Vhi : Vlo, td+dt, tt);
end
endmodule
36 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Modeling a PLL with Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
quency oscillator, the timer() function is used as shown in Listing 11. At every output
transition, the next transition is scheduled using the timer() function to be

 in the future, where δ is a unit-variance zero-mean random process and
K is the number of output transitions per period. Typically, K = 2.

12.3 VCO Model

A VCO generates a sine or square wave whose frequency is proportional to the input
signal level. VCO models, given in Listings 12 and 13, are constructed using three serial
operations, as shown in Figure 16. First, the input signal is scaled to compute the
desired output frequency. Then, the frequency is integrated to compute the output phase.
Finally, the phase is used to generate the desired output signal. The phase is computed
with idtmod, a function that provides integration followed by a modulus operation. This
serves to keep the phase bounded, which prevents a loss of numerical precision that
would otherwise occur when the phase became large after a long period of time. Output
transitions are generated when the phase passes –π/2 and π/2.

The jitter is modeled as a random variation in the frequency of the VCO. However, the
jitter is specified as a variation in the period, thus it is necessary to relate the variation in
the period to the variation in the frequency. Assume that without jitter, the period is
divided into K equal intervals of duration τ = T / K = 1 / K fo. The frequency deviation

LISTING 10 PFD/CP model with synchronous jitter.

`include “disciplines.vams”

module pfd_cp (out, ref, vco);

input ref, vco; output out; electrical ref, vco, out;

parameter real Iout=100u;
parameter integer dir=1 from [–1:1] exclude 0; // dir=1 for positive edge trigger

// dir=–1 for negative edge trigger
parameter real tt=1n from (0:inf);
parameter real td=0 from (0:inf);
parameter real jitter=0 from [0:td/5); // edge-to-edge jitter
parameter real ttol=1p from (0:td/5); // recommend ttol << jitter

integer state, seed;
real dt;

analog begin
@(initial_step) seed = 716;

@(cross(V(ref), dir, ttol)) begin
if (state > –1) state = state – 1;
dt = jitter∗$rdist_normal(seed,0,1);

end

@(cross(V(vco), dir, ttol)) begin
if (state < 1) state = state + 1;
dt = jitter∗$rdist_normal(seed,0,1);

end

 I(out) <+ transition(Iout∗state, td + dt, tt);
end
endmodule

T K⁄ Jδ K⁄+
37 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Modeling a PLL with Jitter
will be updated every interval and held constant during the intervals. With jitter, the
duration of an interval is

. (89)

Δτ is a random variable with variance

. (90)

Therefore,

(91)

where δ is a zero-mean unit-variance Gaussian random process. The dithered frequency
is

LISTING 11 Fixed frequency oscillator with accumulating jitter.

`include “disciplines.vams”

module osc (out);

output out; electrical out;

parameter real freq=1 from (0:inf);
parameter real Vlo=–1, Vhi=1;
parameter real tt=0.01/freq from (0:inf);
parameter real jitter=0 from [0:0.1/freq); // period jitter

integer n, seed;
real next, dT;

analog begin
@(initial_step) begin

seed = 286;
next = 0.5/freq + $abstime;

end

@(timer(next)) begin
n = !n;
dT = jitter∗$rdist_normal(seed,0,1);
next = next + 0.5/freq + 0.707∗dT;

end

V(out) <+ transition(n ? Vhi : Vlo, 0, tt);
end
endmodule

FIGURE 16 Block diagram of VCO behavioral model that includes jitter.

k Σ  mod 2π

Jδ

φ
Vin Vout

ω

τi τ Δτi+=

var Δτ() var T()
K

--------------- J2

K
-----= =

Δτi

Jδi

K
--------=
38 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Modeling a PLL with Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
(92)

Let , then

. (93)

Finally, var(τi) = J2/K, and so and .

The @cross statement is used to determine the exact time when the phase crosses the
thresholds, indicating the beginning of a new interval. At this point, a new random trial
δi is generated.

The final model given in Listing 12. This model can be easily modified to fit other
needs. Converting it to a model that generates sine waves rather than square waves sim-
ply requires replacing the last two lines with one that computes and outputs the sine of
the phase. When doing so, consider reducing the number of jitter updates to one per
period, in which case the factor of 1.414 should be changed to 1.

Listing 13 is a Verilog-A model for a quadrature VCO that exhibits accumulating jitter.
It is an example of how to model an oscillator with multiple outputs so that the jitter on
the outputs is properly correlated.

12.4 Efficiency of the Models

Conceptually, a model that includes jitter should be just as efficient as one that does not
because jitter does not increase the activity of the models, it only affects the timing of
particular events. However, if jitter causes two events that would normally occur at the
same time to be displaced so that they are no longer coincident, then a circuit simulator
will have to use more time points to resolve the distinct events and so will run more
slowly. For this reason, it is desirable to combine jitter sources to the degree possible.

To make the HDL models even faster, rewrite them in either Verilog-HDL or Verilog-
AMS. Be sure to set the time resolution to be sufficiently small to prevent the discrete
nature of time in these simulators from adding an appreciable amount of jitter.

12.4.1 Including Synchronous Jitter into OSC

One can combine the output-referred noise of FDM and FDN and the input-referred
noise of the PFD/CP with the output noise of OSC. A modified fixed-frequency oscilla-
tor model that supports two jitter parameters and the divide ratio M is given in
Listing 14 (more on the effect of the divide ratio on jitter in the next section). The
accJitter parameter is used to model the accumulating jitter of the reference oscillator,
and the syncJitter parameter is used to model the synchronous jitter of FDM, FDN and
PFD/CP. Synchronous jitter is modeled in the oscillator without using a nonzero delay
in the transition function. This is a more efficient approach because it avoids generating
two unnecessary events per period. To get full benefit from this optimization, a modi-
fied PFD/CP given in Listing 15 is used. This model runs more efficiently by removing
support for jitter and the td parameter.

fi
1
K
---- 1

τ Δτi+
----------------- 
 

1
Kτ

1
Δτi

τ
--------+

fc

1 KΔτi fc+
--------------------------= = =

ΔTi KΔτi=

fi

fc

1 ΔTi fc+
-----------------------=

Δτi Jδi K⁄= ΔTi KJδi=
39 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Modeling a PLL with Jitter
12.4.2 Merging the VCO and FDN

If the output of the VCO is not used to drive circuitry external to the synthesizer, if the
divider exhibits simple synchronous jitter, and if the VCO exhibits simple accumulating
jitter, then it is possible to include the frequency division aspect of the FDN as part of
the VCO by simply adjusting the VCO gain and jitter. If the divide ratio of FDN is large,
the simulation runs much faster because the high VCO output frequency is never gener-
ated. The Verilog-A model for the merged VCO and FDN is given in Listing 16. It also
includes code for generating a logfile containing the length of each period. The logfile is

LISTING 12 VCO model that includes accumulating jitter.

`include “disciplines.vams”
`include “constants.vams”

module vco (out, in);

input in; output out; electrical out, in;

parameter real Vmin=0;
parameter real Vmax=Vmin+1 from (Vmin:inf);
parameter real Fmin=1 from (0:inf);
parameter real Fmax=2∗Fmin from (Fmin:inf);
parameter real Vlo=–1, Vhi=1;
parameter real tt=0.01/Fmax from (0:inf);
parameter real jitter=0 from [0:0.25/Fmax); // period jitter
parameter real ttol=1u/Fmax from (0:1/Fmax);

real freq, phase, dT;
integer n, seed;

analog begin
@(initial_step) seed = –561;

// compute the freq from the input voltage
freq = (V(in) – Vmin)∗(Fmax – Fmin) / (Vmax – Vmin) + Fmin;

// bound the frequency (this is optional)
if (freq > Fmax) freq = Fmax;
if (freq < Fmin) freq = Fmin;

// add the phase noise
freq = freq/(1 + dT∗freq);

// phase is the integral of the freq modulo 2π
phase = 2∗`M_PI∗idtmod(freq, 0.0, 1.0, –0.5);

// update jitter twice per period
// 1.414=sqrt(K), K=2 jitter updates/period
@(cross(phase + `M_PI/2, +1, ttol) or cross(phase – `M_PI/2, +1, ttol)) begin

dT = 1.414∗jitter∗$rdist_normal(seed,0, 1);
n = (phase >= –`M_PI/2) && (phase < `M_PI/2);

end

// generate the output
V(out) <+ transition(n ? Vhi : Vlo, 0, tt);

end
endmodule
40 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Modeling a PLL with Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
used in Section 13 when determining SVCO, the power spectral density of the phase of
the VCO output.

LISTING 13 Quadrature Differential VCO model that includes accumulating jitter.

`include “disciplines.vams”
`include “constants.vams”

module quadVco (PIout,NIout, PQout,NQout, Pin,Nin);

electrical PIout, NIout, PQout, NQout, Pin, Nin;
output PIout, NIout, PQout, NQout;
input Pin, Nin;

parameter real Vmin=0;
parameter real Vmax=Vmin+1 from (Vmin:inf);
parameter real Fmin=1 from (0:inf);
parameter real Fmax=2∗Fmin from (Fmin:inf);
parameter real Vlo=–1, Vhi=1;
parameter real jitter=0 from [0:0.25/Fmax); // period jitter
parameter real ttol=1u/Fmax from (0:1/Fmax);
parameter real tt=0.01/Fmax;

real freq, phase, dT;
integer i, q, seed;

analog begin
@(initial_step) seed = 133;

// compute the freq from the input voltage
freq = (V(Pin,Nin) − Vmin) ∗ (Fmax − Fmin) / (Vmax − Vmin) + Fmin;

// bound the frequency (this is optional)
if (freq > Fmax) freq = Fmax;
if (freq < Fmin) freq = Fmin;

// add the phase noise
freq = freq/(1 + dT∗freq);

// phase is the integral of the freq modulo 2π
phase = 2∗`M_PI∗idtmod(freq, 0.0, 1.0, –0.5);

// update jitter where phase crosses π/2
// 2=sqrt(K), K=4 jitter updates per period
@(cross(phase – 3∗`M_PI/4, +1, ttol) or cross(phase – `M_PI/4, +1, ttol) or
 cross(phase + `M_PI/4, +1, ttol) or cross(phase + 3∗`M_PI/4, +1, ttol)) begin

dT = 2∗jitter∗$rdist_normal(seed,0,1);
i = (phase >= –3∗`M_PI/4) && (phase < `M_PI/4);
q = (phase >= –`M_PI/4) && (phase < 3∗`M_PI/4);

end

// generate the I and Q outputs
V(PIout) <+ transition(i ? Vhi : Vlo, 0, tt);
V(NIout) <+ transition(i ? Vlo : Vhi, 0, tt);
V(PQout) <+ transition(q ? Vhi : Vlo, 0, tt);
V(NQout) <+ transition(q ? Vlo : Vhi, 0, tt);

end
endmodule
41 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Modeling a PLL with Jitter
Recall that the synchronous jitter of FDM and FDN has already been included as part of
OSC, so the divider model incorporated into the VCO is noiseless and the jitter at the
output of the noiseless divider results only from the VCO jitter. Since the divider out-
puts one pulse for every N pulses at its input, the variance in the output period is the sum
of the variance in N input periods. Thus, the period jitter at the output, JFD, is times
larger than the period jitter at the input, JVCO, or

. (94)

Thus, to merge the divider into the VCO, the VCO gain must be reduced by a factor of
N, the period jitter increased by a factor of , and the divider model removed.

After simulation, it is necessary to refer the computed results, which are from the output
of the divider, to the output of VCO, which is the true output of the PLL. The period jit-
ter at the output of the VCO, JVCO, can be computed with (94).

To determine the effect of the divider on Sφ(ω), square both sides of (94) and apply (82)

. (95)

LISTING 14 Fixed-frequency oscillator with accumulating and synchronous jitter.

`include “disciplines.vams”

module osc (out);

output out; electrical out;

parameter real freq=1 from (0:inf);
parameter real ratio=1 from (0:inf);
parameter real Vlo=–1, Vhi=1;
parameter real tt=0.01∗ratio/freq from (0:inf);
parameter real accJitter=0 from [0:0.1/freq); // period jitter
parameter real syncJitter=0 from [0:0.1∗ratio/freq); // edge-to-edge jitter

integer n, accSeed, syncSeed;
real next, dT, dt, accSD, syncSD;

analog begin
@(initial_step) begin

accSeed = 286;
syncSeed = –459;
accSD = accJitter∗sqrt(ratio/2);
syncSD = syncJitter;
next = 0.5/freq + $abstime;

end

@(timer(next + dt)) begin
n = !n;
dT = accSD∗$rdist_normal(accSeed,0,1);
dt = syncSD∗$rdist_normal(syncSeed,0,1);
next = next + 0.5∗ratio/freq + dT;

end

V(out) <+ transition(n ? Vhi : Vlo, 0, tt);
end
endmodule

N

JFD NJVCO=

N

cVCOTVCO

cFDTFD

N
-------------------=
42 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Modeling a PLL with Jitter Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
TVCO = TFD / N, and so

cVCO = cFD (96)

From (84),

(97)

Finally, fVCO = N fFD, and so

SVCO = N 2 SFD. (98)

Once FDN is incorporated into the VCO, the VCO output signal is no longer observable,
however the characteristics of the VCO output are easily derived from (94) and (98),
which are summarized in Table 3.

It is interesting to note that while the frequency at the output of FDN is N times smaller
than at the output of the VCO, except for scaling in the amplitude, the spectrum of the
noise close to the fundamental is to a first degree unaffected by the presence of FDN. In
particular, the width of the noise spectrum is unaffected by FDN. This is extremely for-
tuitous, because it means that the number of cycles we need to simulate is independent
of the divide ratio N. Thus, large divide ratios do not affect the total simulation time.

To understand why FDN does not affect the width of the noise spectrum, recall that
while we started with a jitter that varied continuously with time, j(t) in (37), for either
efficiency or modeling reasons we eventually sampled it to end up with a discrete-time
version. The act of sampling the jitter causes the spectrum of the jitter to be replicated at
the multiples of the sampling frequency, which adds aliasing. This aliasing is visible,
but not obvious, at high frequencies in Figure 18. However, especially with accumulat-

LISTING 15 PFD/CP without jitter.

`include “disciplines.vams”

module pfd_cp (out, ref, vco);

input ref, vco; output out; electrical ref, vco, out;

parameter real Iout=100u;
parameter integer dir=1 from [–1:1] exclude 0; // dir = 1 for positive edge trigger

// dir = –1 for negative edge trigger
parameter real tt=1n from (0:inf);
parameter real ttol=1p from (0:inf);

integer state;

analog begin
@(cross(V(ref), dir, ttol)) begin

if (state > –1) state = state – 1;
end
@(cross(V(vco), dir, ttol)) begin

if (state < 1) state = state + 1;
end

 I(out) <+ transition(Iout ∗ state, 0, tt);
end
endmodule

2SVCO
f 2

fVCO
2

------------ 2SFD
f 2

fFD
2

--------=
43 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Modeling a PLL with Jitter
LISTING 16 VCO with FDN.

`include “disciplines.vams”

module vco (out, in);

input in; output out; electrical out, in;

parameter real Vmin=0;
parameter real Vmax=Vmin+1 from (Vmin:inf);
parameter real Fmin=1 from (0:inf);
parameter real Fmax=2∗Fmin from (Fmin:inf);
parameter real ratio=1 from (0:inf);
parameter real Vlo=–1, Vhi=1;
parameter real tt=0.01∗ratio/Fmax from (0:inf);
parameter real jitter=0 from [0:0.25∗ratio/Fmax); // VCO period jitter
parameter real ttol=1u∗ratio/Fmax from (0:ratio/Fmax);
parameter real outStart=inf from (1/Fmin:inf);

real freq, phase, dT, delta, prev, Vout;
integer n, seed, fp;

analog begin
@(initial_step) begin

seed = –561;
delta = jitter ∗ sqrt(2∗ratio);
fp = $fopen(“periods.m”);
Vout = Vlo;

end

// compute the freq from the input voltage
freq = (V(in) – Vmin)∗(Fmax – Fmin) / (Vmax – Vmin) + Fmin;

// bound the frequency (this is optional)
if (freq > Fmax) freq = Fmax;
if (freq < Fmin) freq = Fmin;

// apply the frequency divider, add the phase noise
freq = (freq / ratio)/(1 + dT ∗ freq / ratio);

// phase is the integral of the freq modulo 1
phase = idtmod(freq, 0.0, 1.0, –0.5);

// update jitter twice per period
@(cross(phase – 0.25, +1, ttol)) begin

dT = delta ∗ $rdist_normal(seed, 0, 1);
Vout = Vhi;

end
@(cross(phase + 0.25, +1, ttol)) begin

dT = delta ∗ $rdist_normal(seed, 0, 1);
Vout = Vlo;
if ($abstime >= outStart) $fstrobe(fp, “%0.10e”, $abstime – prev);
prev = $abstime;

end
V(out) <+ transition(Vout, 0, tt);

end
endmodule
44 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Simulation and Analysis Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
ing jitter, the phase noise amplitude at low frequencies is much larger than the aliased
noise, and so the close-in noise spectrum is largely unaffected by the sampling. The
effect of FDN is to decimate the sampled jitter by a factor of N, which is equivalent to
sampling the jitter signal, j(t), at the original sample frequency divided by N. Thus, the
replication is at a lower frequency, the amplitude is lower, and the aliasing is greater, but
the spectrum is otherwise unaffected.

13 Simulation and Analysis

The synthesizer is simulated using the netlist from Listing 18 and the Verilog-A descrip-
tions in Listings 14-16, modifying them as necessary to fit the actual circuit. The simu-
lation should cover an interval long enough to allow accurate Fourier analysis at the
lowest frequency of interest (Fmin). With deterministic signals, it is sufficient to simu-
late for K cycles after the PLL settles if Fmin = 1/(TK). However, for these signals,
which are stochastic, it is best to simulate for 10K to 100K cycles to allow for enough
averaging to reduce the uncertainty in the result.

One should not simply apply an FFT to the output signal of the VCO/FDN to determine
L(Δf) for the PLL. The result would be quite inaccurate because the FFT samples the
waveform at evenly spaced points, and so misses the jitter of the transitions. Instead,
L(Δf) can be measured with Spectre’s Fourier Analyzer, which uses a unique algorithm
that does accurately resolve the jitter [16]. However, it is slow if many frequencies are
needed and so is not well suited to this application.

Unlike L(Δf), Sφ(Δ f) can be computed efficiently. The Verilog-A code for the VCO/
FDN given in Listing 16 writes the length of each period to an output file named peri-
ods.m. Writing the periods to the file begins after an initial delay, specified using out-
Start, to allow the PLL to reach steady state. This file is then processed by Matlab from
MathWorks using the script shown in Listing 17. This script computes Sφ(Δf), the
power spectral density of φ, using Welch’s method [26]. The frequency range is from
fout/2 to fout/nfft. The script computes Sφ(Δf) with a resolution bandwidth of rbw.13 Nor-
mally, Sφ(Δf) is given with a unity resolution bandwidth. To compensate for a non-unity
resolution bandwidth, broadband signals such as the noise should be divided by rbw.
Signals with bandwidth less than rbw, such as the spurs generated by leakage in the CP,
should not be scaled. The script processes the output of VCO/FDN. The results of the

TABLE 3 Characteristics of VCO output relative to the output of FDN assuming the VCO exhibits simple

accumulating jitter and the FDN is noise free.

Frequency Jitter Phase Noise

13.The Hanning window used in the psd() function has a resolution bandwidth of 1.5 bins [12].
Assuming broadband signals, Matlab divides by 1.5 inside psd() to compensate. In order to
resolve narrowband signals, the factor of 1.5 is removed by the script, and instead included in
the reported resolution bandwidth.

fVCO NfFD= JVCO

JFD

N
---------= SφVCO

N2SφFD
=

45 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Example
script must be further processed using the equations in Table 3 to remove the effect of
FDN.

14 Example

These ideas were applied to model and simulate a PLL acting as a frequency synthe-
sizer. A synthesizer was chosen with fref = 25 MHz, fout = 2 GHz, and a channel spacing
of 200 kHz. As such, M = 125 and N = 10,000.

The noise of OSC is –95 dBc/Hz at 100 kHz. Applying (86) to compute c, where
L(Δf) = 316 × 10–12, Δf = 100 kHz, and fo = 25 MHz, gives c = 5 × 10–15. The period
jitter J is then computed from (82) to be 14 ps.

LISTING 17 Matlab script used for computing Sφ(Δf). These results must be further processed using Table 3 to
map them to the output of the VCO.

% Process period data to compute Sφ(Δf)
echo off;
nfft=512; % should be power of two
winLength=nfft;
overlap=nfft/2;
winNBW=1.5; % Noise bandwidth given in bins

% Load the data from the file generated by the VCO
load periods.m;

% output estimates of period and jitter
T=mean(periods);
J=std(periods);
maxdT = max(abs(periods–T))/T;
fprintf(‘T = %.3gs, F = %.3gHz\n’,T, 1/T);
fprintf(‘Jabs = %.3gs, Jrel = %.2g%%\n’, J, 100∗J/T);
fprintf(‘max dT = %.2g%%\n’, 100∗maxdT);
fprintf(‘periods = %d, nfft = %d\n’, length(periods), nfft);

% compute the cumulative phase of each transition
phases=2∗pi∗cumsum(periods)/T;

% compute power spectral density of phase
[Sphi,f]=psd(phases,nfft,1/T,winLength,overlap,’linear’);

% correct for scaling in PSD due to FFT and window
Sphi=winNBW∗Sphi/nfft;

% plot the results (except at DC)
K = length(f);
semilogx(f(2:K),10∗log10(Sphi(2:K)));
title(‘Power Spectral Density of VCO Phase’);
xlabel(‘Frequency (Hz)’);
ylabel(‘S phi (dB/Hz)’);
rbw = winNBW/(T∗nfft);
RBW=sprintf(‘Resolution Bandwidth = %.0f Hz (%.0f dB)’,rbw, 10∗log10(rbw));
imtext(0.5,0.07, RBW);
46 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Example Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
The noise of VCO is –48 dBc/Hz at 100 kHz. Applying (86) and (82) with L(Δf) = 1.59
× 10–5, Δf = 100 kHz, and fo = 2 GHz, gives c = 4 × 10 –14 and a period jitter of J =
4.5 ps.

The period jitter of the PFD/CP and FDs was found to be 2 ns. The FDs were included
into the oscillators, which suppresses the high frequency signals at the input and output
of the synthesizer. The netlist is shown in Listing 18. The results (compensated for non-
unity resolution bandwidth (–28 dB) and for the suppression of the dividers (80 dB)) are
shown in Figures 17-20. The simulation took 7.5 minutes for 450k time-points on a HP
9000/735. The use of a large number of time points was motivated by the desire to
reduce the level of uncertainty in the results. The period jitter in the PLL was found to
be 9.8 ps at the output of the VCO.

The low-pass filter LF blocks all high frequency signals from reaching the VCO, so the
noise of the phase lock loop at high frequencies is the same as the noise generated by the
open-loop VCO alone. At low frequencies, the loop gain acts to stabilize the phase of
the VCO, and the noise of the PLL is dominated by the phase noise of the OSC. There is
some contribution from the VCO, but it is diminished by the gain of the loop. In this
example, noise at the middle frequencies is dominated by the synchronous jitter gener-
ated by the PFD/CO and FDs. The measured results agree qualitatively with the
expected results. The predicted noise is higher than one would expect solely from the
open-loop behavior of each block because of peaking in the response of the PLL from 5
kHz to 50 kHz. For this reason, PLLs used in synthesizers where jitter is important are
usually overdamped.

LISTING 18 Spectre netlist for PLL synthesizer.

// PLL-based frequency synthesizer that models jitter
simulator lang=spectre

ahdl_include “osc.va” // Listing 14
ahdl_include “pfd_cp.va” // Listing 15
ahdl_include “vco.va” // Listing 16

Osc (in) osc freq=25MHz ratio=125 accJitter=14ps syncJitter=2ns
PFD (err in fb) pfd_cp Iout=500ua
C1 (err c) capacitor c=3.125nF
R (c 0) resistor r=10k
C2 (c 0) capacitor c=625pF
VCO (fb err) vco Fmin=1GHz Fmax=3GHz Vmin=–4 Vmax=4 ratio=10000 \

jitter=4.5ps outStart=10ms

JitterSim tran stop=60ms

Osc &
÷125

VCO &
÷10,000PFD & CP

err

c
fb

in
47 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Conclusion
15 Conclusion

A methodology for modeling and simulating the phase noise and jitter performance of
phase-locked loops was presented. The simulation is done at the behavioral level, and so
is efficient enough to be applied in a wide variety of applications. The behavioral mod-
els are calibrated from circuit-level noise simulations, and so the high-level simulations
are accurate. Behavioral models were presented in the Verilog-A language, however
these same ideas can be used to develop behavioral models in purely event-driven lan-
guages such as Verilog-HDL and Verilog-AMS. This methodology is flexible enough to
be used in a broad range of applications where phase noise and jitter is important.

FIGURE 17 Noise of the closed-loop PLL at the output of the VCO when only the reference oscillator exhibits
jitter (CL) versus the noise of the reference oscillator mapped up to the VCO frequency when
operated open loop (OL).

FIGURE 18 Noise of the closed-loop PLL at the output of the VCO when only the VCO exhibits jitter (CL)
versus the noise of the VCO when operated open loop (OL).

–80

–70

–60

–50

–40

–30

–20

–10

 300 Hz 1 kHz 3 kHz 10 kHz 30 kHz 100 kHz

S φ
 (

d
B

/H
z)

OL

CL

 –40

 –30

 –20

–10

0

 300 Hz 1 kHz 3 kHz 10 kHz 30 kHz 100 kHz

S φ
 (

d
B

/H
z)

OL

CL
48 of 52 The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/

Conclusion Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
15.1 If You Have Questions

If you have questions about what you have just read, feel free to post them on the Forum
section of The Designer’s Guide Community website. Do so by going to www.designers-
guide.org/Forum. For more in depth questions, feel free to contact me in my role as a
consultant at ken@designers-guide.com.

Acknowledgement

I would like to recognize the collective contributions of the readers of www.designers-
guide.org, who have pointed out and helped correct many errors. I would also like to
thank Alper Demir and Manolis Terrovitis of the University of California in Berkeley
for many enlightening conversations about noise and jitter. Furthermore, I would like to

FIGURE 19 Noise of the closed-loop PLL at the output of the VCO when only the PFD/CP, FDM, and FDN
exhibit jitter (CL) versus the noise of these components mapped up to the VCO frequency when
operated open loop (OL).

FIGURE 20 Closed-loop PLL noise performance compared to the open-loop noise performance of the
individual components that make up the PLL. The achieved noise is slightly larger than what is
expected from the components due to peaking in the response of the PLL.

–60

–55

–50

–45

–40

–35

–30

–25

 1 kHz 10 kHz 100kHz

S φ
 (

dB
/H

z)

CL

OL

–50

–40

–30

–20

–10

0

 300 Hz 1 kHz 3 kHz 10 kHz 30 kHz 100 kHz

S φ
 (

dB
/H

z)

VCO-OL

OSC-OL

PFD/CP,FD-OL

PLL-CL
49 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/
https://www.designers-guide.org/
http://www.designers-guide.org/Forum
http://www.designers-guide.org/Forum
http://www.designers-guide.org
http://www.designers-guide.org/Forum
http://www.designers-guide.org/Forum
mailto:ken@designers-guide.com

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Conclusion
thank Mark Chapman, Masayuki Takahashi, and Kimihiro Ogawa of Sony Semiconduc-
tor, Rich Davis, Frank Hellmich and Randeep Soin of Cadence Design Systems, Jess
Chen of RF Micro Devices, Frank Herzel of IHP Microelectronics and Frank Wied-
mann of Infineon for their probing questions and insightful comments, as well as their
help in validating these ideas on real frequency synthesizers.

Thanks to Srinivasa Rao Madala for pointing out an error in (60), the cycle-to-cycle jit-
ter of synchronous jitter, and to Prasun Raha for pointing out issues with the noise
model of the charge pump. Thanks to “cheap_salary” from The Designer’s Guide Com-
munity Forum for pointing out problems in Listing 8.

References

[1] Cadence Design Systems. SpectreRF simulation option. www.cadence.com.

[2] H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E. Malavasi, A.
Sangiovanni-Vincentelli, and I. Vassiliou. A Top-Down Constraint-Driven Method-
ology for Analog Integrated Circuits. Kluwer Academic Publishers, 1997.

[3] A. Demir, E. Liu, A. Sangiovanni-Vincentelli, and I. Vassiliou. Behavioral simula-
tion techniques for phase/delay-locked systems. Proceedings of the IEEE Custom
Integrated Circuits Conference, pp. 453-456, May 1994.

[4] A. Demir, E. Liu, and A. Sangiovanni-Vincentelli. Time-domain non-Monte-Carlo
noise simulation for nonlinear dynamic circuits with arbitrary excitations. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
15, no. 5, pp. 493-505, May 1996.

[5] A. Demir, A. Sangiovanni-Vincentelli. Simulation and modeling of phase noise in
open-loop oscillators. Proceedings of the IEEE Custom Integrated Circuits Confer-
ence, pp. 445-456, May 1996.

[6] A. Demir, A. Sangiovanni-Vincentelli. Analysis and Simulation of Noise in Nonlin-
ear Electronic Circuits and Systems. Kluwer Academic Publishers, 1997.

[7] A. Demir, A. Mehrotra, and J. Roychowdhury. Phase noise in oscillators: a unifying
theory and numerical methods for characterization. IEEE Transactions on Circuits
and Systems I: Fundamental Theory and Applications, vol. 47, no. 5, May 2000,
pp. 655 -674.

[8] F. Gardner. Phaselock Techniques. John Wiley & Sons, 1979.

[9] W. Gardner. Introduction to Random Processes: With Applications to Signals and
Systems. McGraw-Hill, 1989.

[10] Paul R. Gray and Robert G. Meyer. Analysis and Design of Analog Integrated Cir-
cuits. John Wiley & Sons, 1992.

[11] Emad Hegazi, Jacob Rael & Asad Abidi. The Designer's Guide to High-Purity
Oscillators. Springer, 2004.

[12] F. Harris. On the use of windows for harmonic analysis with the discrete Fourier
transform. Proceedings of the IEEE, vol. 66, no. 1, January 1978.
50 of 52 The Designer’s Guide Community
www.designers-guide.org

http://www.cadence.com/datasheets/spectrerf.html
https://www.designers-guide.org/
https://www.designers-guide.org/
http://www.designers-guide.org/Books/dg-osc/index.html
http://www.designers-guide.org/Books/dg-osc/index.html

Conclusion Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers
[13] Frank Herzel and Behzad Razavi. A study of oscillator jitter due to supply and sub-
strate noise. IEEE Transactions on Circuits and Systems – II: Analog and Digital
Signal Processing, vol. 46. no. 1, Jan. 1999, pp. 56-62.

[14] F. Käertner. Determination of the correlation spectrum of oscillators with low noise.
IEEE Transactions on Microwave Theory and Techniques, vol. 37, no. 1, pp. 90-
101, Jan. 1989.

[15] F. X. Käertner. Analysis of white and f –α noise in oscillators. International Journal
of Circuit Theory and Applications, vol. 18, pp. 485–519, 1990.

[16] Kenneth S. Kundert. The Designer’s Guide to SPICE and Spectre. Kluwer Academic
Publishers, 1995.

[17] Kenneth S. Kundert. The Designer’s Guide to Verilog-AMS. Kluwer Academic
Publishers, 2004.

[18] Ken Kundert. Introduction to RF simulation and its application. Journal of Solid-
State Circuits, vol. 34, no. 9, September 1999. Available from www.designers-
guide.org/analysis.

[19] Ken Kundert. Modeling and simulation of jitter in phase-locked loops. In Analog
Circuit Design: RF Analog-to-Digital Converters; Sensor and Actuator Interfaces;
Low-Noise Oscillators, PLLs and Synthesizers, Rudy J. van de Plassche, Johan H.
Huijsing, Willy M.C. Sansen, Kluwer Academic Publishers, November 1997.

[20] Ken Kundert. Modeling and simulation of jitter in PLL frequency synthesizers.
Available from www.designers-guide.org/analysis.

[21] Ken Kundert. Verification of bit-error rate in bang-bang clock and data recovery
circuits. Available from www.designers-guide.org/analysis.

[22] David C Lee, Analysis of jitter in phase-locked loops. IEEE Transactions on Cir-
cuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 11, pp. 704
-711, November 2002.

[23] Jri Lee, Kenneth S. Kundert, and Behzad Razavi. Analysis and modeling of bang-
bang clock and data recovery circuits. IEEE Journal of Solid-State Circuits, vol. 39,
no 9, September 2004, pp. 1571-1580.

[24] Maxim Integrated Products. Converting between RMS and Peak-to-Peak Jitter at a
Specified BER. Application note HFAN-4.0.2, December 2000. Available from pdf-
serv.maxim-ic.com/arpdf/AppNotes/3hfan402.pdf.

[25] J. McNeill. Jitter in Ring Oscillators. IEEE Journal of Solid-State Circuits, vol. 32,
no. 6, June 1997.

[26] A. Oppenheim, R. Schafer. Digital Signal Processing. Prentice-Hall, 1975.

[27] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-
Hill, 1991.

[28] Joel Phillips and Ken Kundert. Noise in mixers, oscillators, samplers, and logic: an
introduction to cyclostationary noise. Proceedings of the IEEE Custom Integrated
Circuits Conference, CICC 2000. The paper and presentation are both available
from www.designers-guide.org/theory.
51 of 52The Designer’s Guide Community
www.designers-guide.org

https://www.designers-guide.org/analysis/
https://www.designers-guide.org/
https://www.designers-guide.org/
http://www.designers-guide.org/Theory/
http://pdfserv.maxim-ic.com/arpdf/AppNotes/3hfan402.pdf
http://pdfserv.maxim-ic.com/arpdf/AppNotes/3hfan402.pdf
https://designers-guide.org/analysis/dg-spice/index.html
https://www.designers-guide.org/analysis/
https://www.designers-guide.org/analysis/
https://designers-guide.org/analysis/rf-sim.pdf
https://designers-guide.org/verilog-ams/dg-vams/index.html
https://designers-guide.org/theory/cyclo-paper.pdf
https://designers-guide.org/theory/cyclo-paper.pdf
https://www.designers-guide.org/analysis
https://designers-guide.org/analysis/PLLjitter.pdf
https://designers-guide.org/analysis/PLLjitter.pdf
https://designers-guide.org/analysis/bang-bang.pdf
https://designers-guide.org/analysis/bang-bang.pdf
https://kenkundert.com/docs/jssc04-09.pdf
https://kenkundert.com/docs/jssc04-09.pdf

Predicting the Phase Noise and Jitter of PLL-Based Frequency Synthesizers Conclusion
[29] J. J. Rael and A. A. Abidi. Physical processes of phase noise in differential LC
oscillators. Proceedings of the IEEE Custom Integrated Circuits Conference, CICC
2000.

[30] T. A. D. Riley, M. A. Copeland, and T. A. Kwasniewski. Delta-sigma modulation in
fractional-N frequency synthesis. IEEE Journal of Solid-State Circuits, vol. 28 no.
5, May 1993, pp. 553 -559

[31] Ulrich L. Rohde. Digital PLL Frequency Synthesizers. Prentice-Hall, Inc., 1983.

[32] G. Vendelin, A. Pavio, U. Rohde. Microwave Circuit Design. J. Wiley & Sons,
1990.

[33] Verilog-AMS Language Reference Manual: Analog & Mixed-Signal Extensions to
Verilog HDL, version 2.1. Accellera, January 20, 2003. Available from www.accel-
lera.com. An abridged version is available from www.verilogams.com or
www.designers-guide.org/verilogams.

[34] Verilog-A/MS, verilogams.com.

[35] T. C. Weigandt, B. Kim, and P. R. Gray. Jitter in ring oscillators. 1994 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS-94), vol. 4, 1994, pp. 27-30.

[36] D. Yee, C. Doan, D. Sobel, B. Limketkai, S. Alalusi, and R. Brodersen. A 2-GHz
low-power single-chip CMOS receiver for WCDMA applications. Proceedings of
the European Solid-State Circuits Conference, Sept. 2000.
52 of 52 The Designer’s Guide Community
www.designers-guide.org

http://www.accellera.com
http://www.accellera.com
https://www.designers-guide.org/
https://www.designers-guide.org/
https://www.verilogams.com
https://www.designers-guide.org/verilogams
https://verilogams.com

	Contents
	1 Introduction
	1.1 Frequency Synthesis
	1.2 Direct Simulation
	1.3 When Direct Simulation Fails
	1.4 Monte Carlo-Based Methods
	1.5 Predicting Noise in PLLs

	2 Phase-Domain Model
	2.1 Small-Signal Stability
	2.2 Noise Transfer Functions
	2.3 Noise Model

	3 Oscillators
	3.1 Oscillator Phase Noise
	3.2 Characterizing Oscillator Phase Noise
	3.3 Phase-Domain Models for the Oscillators

	4 Loop Filter
	5 Phase Detector and Charge Pump
	6 Frequency Dividers
	6.1 Cyclostationary Noise.
	6.2 Converting to Phase Noise
	6.3 Phase-Domain Model for Dividers

	7 Fractional-N Synthesis
	8 Jitter
	8.1 Jitter Metrics
	8.1.1 RMS versus Peak-to-Peak Jitter

	8.2 Types of Jitter

	9 Synchronous Jitter
	9.1 Extracting Synchronous Jitter
	9.1.1 Extracting the Jitter of Dividers
	9.1.2 Extracting the Jitter of the Phase Detector

	10 Accumulating Jitter
	10.1 Extracting Accumulating Jitter
	10.1.1 Example

	11 Jitter of a PLL
	12 Modeling a PLL with Jitter
	12.1 Modeling Driven Blocks
	12.1.1 Frequency Divider Model
	12.1.2 PFD/CP Model

	12.2 Modeling Accumulating Jitter
	12.2.1 OSC Model

	12.3 VCO Model
	12.4 Efficiency of the Models
	12.4.1 Including Synchronous Jitter into OSC
	12.4.2 Merging the VCO and FDN

	13 Simulation and Analysis
	14 Example
	15 Conclusion
	15.1 If You Have Questions

	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

