
The Designer’s Guide Community downloaded from www.designers-guide.org

Data Converters

Monte Mar
Version 1, 12 November 2010 Describes how to model data converters in Verilog-AMS.

First written in 2003 for a book that was never published. Last updated on January 29, 2011.
You can find the most recent version at www.designers-guide.org. Contact the author via e-
mail at monte.mar@comcast.net.

Permission to make copies, either paper or electronic, of this work for personal or classroom
use is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage and that the copies are complete and unmodified. To distribute other-
wise, to publish, to post on servers, or to distribute to lists, requires prior written permission.
Copyright2011, Monte Mar – All Rights Reserved 1 of 45

http://www.designers-guide.org
http://www.designers-guide.org
http://www.designers-guide.org
mailto:monte.mar@comcast.net
http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Contents
Contents

1 Introduction 2
2 A Simple Functional A/D Model 3
3 Flash Converters 5

3.1 Introduction 5
3.2 Modeling Resistor Mismatch 6
3.3 Modeling Bubble Errors 7
3.4 Two-Stage A/Ds 10
3.5 Folding and Averaging 10

4 Modeling Switched-Capacitor Integrators and Gain Stages 11
4.1 Switched Capacitor Integrator Analysis. 11
4.2 Difference Equation Analysis 12
4.3 Modeling the Effects of Finite Op-Amp Gain 13
4.4 Modeling the Effects of Non-linearities 14
4.5 Combining Finite Gain and Capacitor Nonlinearity 16
4.6 Parasitic Input Capacitance of the Op-amp 16
4.7 Integrator Settling 16
4.8 Integrator Clipping 17
4.9 Continuous Time Models of the SC Integrator 17

5 Modeling Noise in Switched-Capacitor Circuits 17
5.1 Generating White Noise 18
5.2 Generating 1/f Noise 18

6 Algorithmic and Pipelined A/D Converters 22
6.1 Modeling the Pipelined Converter 23
6.2 Digital Correction for Comparator Offset 24
6.3 Modeling the SC S/H and Gain Stage 26
6.4 Digital Logic 26
6.5 A Complete Pipeline A/D Model 27
6.6 Modeling Non-Idealities in the Pipelined Converter Stage 27

7 Oversampling Noise Shaping A/D Converters 30
7.1 Modulators for Oversampling A/D Conversion 31
7.2 Quantization Noise and Oversampling 31
7.3 Noise Shaping and the D-S Modulator Family 32
7.4 Developing Accurate High-Level Simulation Models 35
7.5 Digital Decimation Filtering 39
7.6 A Behavioral Modeling Example 39

8 D/A Conversion 39
8.1 Switched-Capacitor DACs 39
8.2 Unit Element DACs 42
8.3 Oversampling D/A Conversion 43

9 Summary 44
9.1 If You Have Questions 44

1 Introduction

So far in this book, the modeling techniques have focused on blocks where the major
choices are transistor-level modeling or behavioral modeling of a single block. When
several blocks are combined, the choices for modeling techniques increase dramatically.
The main objectives for modeling need to be defined in order to guide which modeling
techniques will be most effective.
2 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

A Simple Functional A/D Model Data Converters
In this paper, four types of data converters are examined:

• Flash Converters

• Pipelined Converters

• Oversampling/Noise Shaping Converters

• Current Steering D/A converters

An A/D converter can be thought of as a complex mixed-signal system. Analog and dig-
ital blocks of varying complexity are combined to perform a function that is often tim-
ing critical. Since it is a system it can be modeled at different levels of abstraction. The
correct modeling technique to use is defined by the results that need to be obtained. In
early design stages, a very simple behavioral model may be needed by system level
designers to investigate trade-offs in sample rate against the number of bits required.
During the detailed design stage, designers may need a model more closely based on
structure that captures the effects of circuit non-idealities to investigate effects like non-
linearity on the converter or sample rate limitations. Different levels of abstraction can
be used in each of the components to capture the relevant behavior. For full-chip valida-
tion, a model that correctly captures performance and system timing may be needed.
Finally, a very specific model replicating a certain type of failure might need to be
developed.

For each of the applications, there are trade-offs in speed of evaluation and accuracy of
the model. At one end of the spectrum, SPICE simulation can be considered an accurate
behavioral model. However for some converters, especially oversampling converters,
the numerical noise of the simulator can provide artifacts that mask the true resolution
of the converter. At the other end of the spectrum, simple behavioral models capture the
function of the converter, but may not be able to adequately model second order effects
like non-linearity. This paper illustrates how these types of problems can be attacked
with behavioral modeling in Verilog AMS.

As a general rule, the modeling techniques used in this paper focus on using the highest
level of abstraction. This approach usually gives the fastest model, providing the
designer with the capability of exploring parametric variations in the model. Balanced
with the level of abstraction is an approach that can be extended to capture relevant sec-
ond order effects as needed.

2 A Simple Functional A/D Model

The function of the A/D converter is well known and independent of the conversion
algorithm used. Under the command of a request-for-conversion signal, the A/D block
will sample the input voltage and provide a digital representation of the analog voltage
with respect to some reference voltage. For most system-level simulation applications, a
very simple model can be used regardless of the implementation.

Consider the model shown in Listing 1, which was modified from the code found at the
examples section at the VerilogAMS website on www.eda.org. The website model is
based on Verilog-A where the Voltage nature provides support for continuous-valued
wires. Within Verilog AMS, there are three alternatives for continuous time wires: Volt-
age, electrical, and wreal wires. Wires that are declared electrical use the electrical dis-
cipline, which forces the through (voltage) and across (current) variables to conform to
3 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters A Simple Functional A/D Model
conservation laws (Kirchhoff’s voltage and current laws). They can only be assigned
values within an analog context. The voltage nature is similar, but there is no associated
current context. The wreal construct allows real valued wires.

Models based on Voltage or electrical variables must use the analog solver. These mod-
els will be much slower than digital models since convergence is needed at every time-
step. For many models in this paper, only voltages are being sampled and processed.
The amount of current does not matter. This means that wires can be declared using the
Voltage nature. If a much faster digital event-driven formulation can be found, wreal
wires can be used and the time-step solver will be avoided. As a general rule of thumb,
replacing a SPICE transistor level model with a behavioral model that uses the analog
solver provides speed-ups in the 5-10X region. Replacing a analog solver model with an
event-driven wreal-based model can provide another 10-20X speedup. An event-driven
model can achieve a 100-200X speedup over a transistor level simulation [1].

The model shown in Listing 1 avoids the analog context. It implements a modified suc-
cessive approximation algorithm. The conversion is controlled by the rising edge of the
clk signal. The input is sampled and converted to a real value. Since there is no need for
conservation of voltage and current, there is no need to use electrical variables. A loop

LISTING 1 A behavioral model of an A/D converter.

‘include “discipline.h”
module adc_8bit_ideal(dout, in, clk);
voltage in;
output dout;
reg [7:0] dout;
input clk;
parameter real vref = 1.0 from [0:10];
parameter real propDel = 2.0 from (0:100]; // Delay is determined by ‘timescale
real unconverted, halfref;
integer i;

initial begin
for (i = 0; i < 8; i = i + 1) begin

dout[i] = 0;
end

end

always @(posedge(clk)) begin
#propDel;
halfref = vref / 2;
unconverted = V(in);
for (i = 7; i >= 0; i = i – 1) begin

if (unconverted > halfref) begin
dout[i] = 1;
unconverted = unconverted - halfref;

end else begin
dout[i] = 0;

end
unconverted = unconverted2.0;

end
end
endmodule
4 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Flash Converters Data Converters
is used to make a decision as to whether the current value (unconverted) is above 1/2 of
the full scale reference or below. The loop then calculates the residue and amplifies it,
repeating the binary search to generate the bits of the conversion word.

While the routine is compact, efficient, and functionally correct at a high level, it does
not model some key features in converters that may affect the overall performance of
the system. An inherent sample and hold is coded into the routine. The conversion time
is fixed and controlled by a fixed delay (2.1 ns in this case). The model assumes equally
spaced sizes for quantization steps, implying perfect linearity. The output is coded as an
unsigned binary signal. The following sections detail various A/D converters and
present methods for modeling a select set of problems.

3 Flash Converters

3.1 Introduction

Flash converters will be used to introduce behavioral models for A/D converters. A
flash converter makes use of a resistor string, comparators, and digital decoding logic to
achieve an A/D conversion. A basic flash 2-bit flash converter is shown in Figure 1.

In a simple flash A/D converter, n-bits of resolution are obtained by using a resistor
string with 2n-1 taps and 2n-1 comparators. One of the key features of the flash architec-
ture is the open loop nature of the circuits. There are no feedback paths nor amplifiers
with feedback providing precision gains. Another key feature is the parallelism of the
architecture. A single input is simultaneously compared to 2n-1 reference values. The
result from the comparators is a thermometer code indicating the conversion value. A
thermometer code is a word with only one transition between 0 and 1 values, so the
boundary appears much like the mercury in a thermometer. Digital logic is used to
encode the thermometer coded output to a binary coded word. This configuration pro-
vides the highest speed possible in a given technology. The conversion time is simply a
comparator evaluation time, plus the time to encode the thermometer code output.

FIGURE 1 A two-bit flash converter.

_+

_+

_+

Vin

R

R

R

R

Encoding
Logic

2 Converter
Output

clock
5 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Flash Converters
The large input capacitance of these converters provides problems in systems. Note that
each of the 2n-1 comparators will have one input tied to the resistor string and the other
input tied to the input. This usually means that some type of buffer amplifier is needed
to drive the comparator inputs.

Most A/D converters require a clock or a begin conversion signal. A flash converter can
be designed to be run without a clock but this requires that the propagation delays of all
the comparator paths be equal so that the thermometer code output moves monotoni-
cally without glitching. More commonly, the outputs of the comparators are latched
under the control of a clock signal.

Performance of these converters is limited by several factors. The overall resolution is
limited by the precision of the resistor string and by comparator offsets.The size (in
area) is limited by the need to integrate the large number of comparators. Typically, res-
olutions of 8-bits are obtained with an untrimmed resistor and careful layout. Speed is
limited by the power dissipation of the resistor string and comparators. More current can
provide faster comparators, but incremental additions in current are magnified by the
need to have 2n-1 comparators.

A wide variety of problems in this type of converter can be studied using behavioral
modeling. A few problems will be illustrated with examples, followed by a brief discus-
sion of current directions of research in flash converters.

3.2 Modeling Resistor Mismatch

For a well designed flash A/D converter, the resistor mismatch should dominate the
overall resolution of the converter. Resistor mismatch can be studied statistically to pre-
dict yields. Specific types of mismatch may need to be simulated to verify the effects on
overall system performance.

There are several approaches to modeling the resistor mismatch. A simple approach
would be to mimic the physical structure by writing a resistor model, a comparator
model, and instantiating them. This might be the way it would be done from a schematic
representation or if a spice netlist were translated. A faster and more compact way
would be to describe the problem algorithmically, providing more compact code and an
implementation that is easier to understand.

The previous functional A/D model made use of successive approximation, and can be
modified to easily support resistor mismatches. The key idea is that the differences in
quantization steps caused by resistor mismatch accumulate along the resistor string giv-
ing rise to non-linearities. Figure 2 illustrates this with a plot of the A/D transfer func-
tion. The dark bold line is an ideal transfer function, while the shaded line is a non-ideal
transfer function. From this plot, the two basic measures of non-linearity, differential
and integral, can be determined. The differences between two adjacent resistor taps
gives rise to different step sizes, shown as S0, S1, and S2. Differential non-linearity is
given by calculating the difference in step-sizes, and finding the maximum value over
the whole range. The fact that the differences of all the steps sum up to equal the refer-
ence voltage means that it is possible for some taps voltages to be closer to their ideal
values even though all the steps do not match. At a given step, the difference between
the ideal value and the current value is a measure of integral non-linearity, as shown by
I1, I2, and I3. When specifying the quality of an A/D converter, the maximum value over
6 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Flash Converters Data Converters
all steps is taken as the integral non-linearity. Plots of both DNL and INL vs. code num-
ber are typically given to show the quality of a converter.

A portion of a model for resistor mismatches is shown in Listing 2.

FIGURE 2 An illustration of non-linearities in A/D transfer curves.

LISTING 2 A modified A/D model with resistor mismatch.

 initial begin
for (i = 0; i < 8; i = i+1) begin

dout[i] = 0;
end
for (i = 1; i < 255; i= i+1) begin

taps[i] = (1.0+(($random % 65536)/6536.0)0.4)vref/256;
end
taps[255] = vref;

end

always @(posedge(clk)) begin
unconverted = V(vin);
refval = 0;
count = 0;
for (i = 0; i <= 255; i = i+1) begin

if (overdrive < unconverted) begin
refval = refval + taps[i];
count = i;

end
end
thresh = 128;
for (i = 7; i >= 0; i = i-1) begin

if (count > thresh) begin
dout[i] = 1;
count = count - thresh;

end else
dout[i] = 0;

thresh = thresh/2;
end

end

11

10

01

00
Vref0.5Vref

I1

I2

I3

O
ut

pu
t

D
ig

ita
l C

od
e

Input Voltage

S1

S2

S0
7 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Flash Converters
This model works, but several improvements could be added. Note that the comparator
reference values are stored in an array called result. It was assumed that the 255 values
for the array were generated using the $random function in an initial block to generate
the values, as might be done for statistical analysis. However, it may be desirable to use
a fixed set of comparator reference values to model some systematic perturbations in the
resistor chain. It is possible to declare the values by hand and include them in the model.
A second improvement could be made in computation efficiency. For the 8-bit model,
255 comparisons are performed per conversion. Since the resistor values are calculated
prior to execution, they could also be encoded as the 255 comparison levels. In this case,
a binary search algorithm could then be implemented using the reference values, pro-
vided that the overall reference values remain monotonic with array index. Note that the
model calculates the conversion output as an unsigned integer, avoiding the need for
thermometer to binary code conversion.

3.3 Modeling Bubble Errors

To obtain the best speed in the converter, a simple but fast comparator is often used. The
offsets in the comparators need to be made less than the resolution of a step-size. An
offset larger than a step-size will cause a missing code error. If the resistor string is
driven by 3.3V and the converter is designed for 8-bit accuracy, the comparator offset
must be held to less than 3.3V/256 = 12.9 mV. For CMOS processes, this can be diffi-
cult to do, so some form of offset cancellation is often used.

The comparator offset has two effects. If the comparator offset is less than the size of
the quantization step, the effect looks much like a mismatch in resistance and leads to
linearity problems. If the effect is larger than the quantization step, it is possible that the
thermometer code output can become non-monotonic.

The non-monotonicity of the code can be caused by other problems. For very high speed
flash converters, mismatches in comparator delay can also cause the problem. The delay
differences do not have to be large and code errors only show up when the input is mov-
ing very fast relative to the sampling rate. The errors typically show up as a non-mono-
tonic thermometer code. This type of error is called a bubble error. The thermometer
code will have a pattern like 111010000. The extra 0 looks like a bubble in the mercury
of a thermometer. The encoding of the error can lead to codes that are distant from the
expected code, and this may appear like a brief anomaly or sparkle in the time series of
codes. Hence they are called sparkle errors.

Bubble errors can also be caused by metastability in the latched comparators. Metasta-
bility is the condition where the output of a latch does not resolve to either logic level
within a clock period. The latch instead remains near an unstable equilibrium point.
Comparator metastability is related to the amount of time allowed for signal evolution
and the gain of the comparator. Proper design is needed to ensure adequate time for res-
olution and high enough gain to limit the probability of metastability to a low enough
value. It is also possible to detect metastability and force an output state.

There are two reasons for modeling bubble errors. The first reason may be to test
hypotheses on why a converter creates the errors. The second reason may be to see how
a system responds to bubble errors and if they can be tolerated. In the first case, more
information is needed to determine what a good model is. In the second case, bubble
errors can be introduced by injecting them into the model.
8 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Flash Converters Data Converters
In order to model bubble errors, the model must be extended from the simple model of
Listing 2. An integer output cannot contain information about the bubble error. An array
or vector can be used to hold the thermometer code. Additional digital logic would be
needed for thermometer code to binary or gray code conversion. Logic implementations
of the encode logic are described in the literature [2], [3].

One way to model the comparator errors is to incorporate a metastability model for the
comparator error. The chance of metastability is modeled as a function of the input over-
drive to the comparator and a probability that the comparator does not evaluate within
the allotted time. To model the problem of comparator delay, small delay differences
can be assigned to each comparator much like small differences in resistance were
assigned to the values in the resistor ladder. Listing 3 shows a portion of a model with

the delays assigned and a very simple metastability model incorporated. The delays are

LISTING 3 A code fragment adding delays and a metastability model.

initial begin
for (i = 0; i < 8; i = i+1) begin

dout[i] = 0;
end
refs[0] = (1.0+(($random % 65536)/65536.0)0.4)vref/256;
for (i = 1; i < 255; i= i+1) begin

refs[i] = (1.0+(($random % 65536)/65536.0)0.4)vref/256 + refs[i–1];
end
refs[255] = vref;
for (i = 0; i < 255; i= i+1) begin

// Delay is in ns, if all modules use ‘timescale 1ns / 1ps
del[i] = (1.0)10.0 + ($random % 65536)/65536.0)10;
if (del[i] < 0.0) del[i] = -del[i];

end
end

always @(posedge(clk)) begin
unconverted = V(vin);
refval = 0;
count = 0;
for (i = 0; i <= 255; i = i+1) begin

overdrive = unconverted – refs[i];
if (overdrive < 0.0) begin

overdrive = –overdrive;
end

if (overdrive < vref/1024) begin
// very simple metastability model
if ($random > 0) dout[i] <= #(del[i]) 1;
else dout[i] <= #(del[i]) 0;

end else if (unconverted > refs[i]) begin
dout[i] <= #(del[i]) 1;

end else begin
dout[i] <= #(del[i]) 0;

end
end
9 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Modeling Switched-Capacitor Integrators and Gain Stages
generated in the initial block. Metastability is modeled by looking for comparator input
voltages that are less than 0.25 of a step, and then assigning the output randomly.

3.4 Two-Stage A/Ds

Modeling of the flash A/D converter focused basically on mismatch failures and
dynamic effects. Flash A/D converters are also used as building blocks for Two-Stage or
subranging A/D converters. Behavioral modeling of a two-stage A/D converter is more
challenging and can be used to study potential problems. A two-stage A/D converter
makes use of 2 flash A/Ds, a D/A, and a differencing amplifier. A basic block diagram is
shown in Figure 3.

The key advantage of the two-stage architecture is the reduction in overall hardware. An
8-bit flash required 255 comparators. A two-stage might have 4 bit flash A/D converters
in each stage leading to 30 comparators. However, there are now new problems to study.
The linearity of the first 4-bit A/D and the D/A needs to be as good as the overall con-
verter. Note that if a Flash A/D converter is used, the resistor string can be used for the
D/A function. If the linearity in the first A/D converter is not as good as the overall con-
verter, then the residue created for the second stage could lead to errors. A second prob-
lem for the two-stage design is the need for synchronization between the first
conversion and the second sub-conversion. Both stages need to convert the same input
signal. If the input signal is moving during conversion, it is possible for the voltage to
change before it reaches the differencing amplifier causing a skew in time, leading to an
error in voltage. This problem can be remedied by using a sample and hold or an analog
delay line.

3.5 Folding and Averaging

A recent technique for improving the design of flash type converters is the use of fold-
ing and averaging. This is beyond the scope of this paper. A future version of this paper
may add models for these types of converters.

4 Modeling Switched-Capacitor Integrators and Gain
Stages

Switched-capacitor (SC) circuits can provide lower cost implementations for A/D con-
verters in standard digital CMOS technologies. Accurate modeling of the SC integrator
is important for prediction of overall A/D behavior. This section will provide the back-

FIGURE 3 A block diagram showing a two-stage flash A/D converter.

Coarse
A/D

Fine
A/D+



Coarse
D/A

Upper Bits

Lower Bits
Input Voltage
10 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Modeling Switched-Capacitor Integrators and Gain Stages Data Converters
ground on SC circuit modeling necessary for studying SC implementations of pipelined
and oversampling A/D converters. In addition, the SC modeling approach is flexible
enough to be used for modeling SC filters built from integrator blocks. The techniques
described in this section provide efficient modeling capabilities that can also incorporate
sampled-data noise effects.

A switched capacitor integrator consists of an op-amp, switches, and capacitors as
shown in Figure 4. Some different ways to model an SC integrator will be discussed in

this section. The models will start out at a high-level and move down to more detailed
models.

4.1 Switched Capacitor Integrator Analysis.

This section develops a high level model for the integrator that can be quite accurate for
design exploration work, while still maintaining very fast simulation times. A switched-
capacitor integrator can be analyzed using charge conservation equations that can be
coded using an event-driven formulation. This provides one of the fastest methods for
simulating switched-capacitor circuits with the potential for very high accuracy,
depending on which second-order effects dominate. An added advantage of this model
is the relative ease for including sampled noise effects.

4.2 Difference Equation Analysis

Consider the circuits shown in Figure 4. Both inverting and non-inverting SC integra-
tors are shown. Both circuits have the same timing diagram. It is assumed that the over-
all clock period is defined as T. Consider first the non-inverting integrator. When 1 is

FIGURE 4 Two switched-capacitor blocks and a timing diagram.

2

1

1

2

CS

CI

VI
VO



+

2

1

2

1

CS

CI

VI
VO



+

1

2

VI

VO

Non-Inverting

Inverting
11 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Modeling Switched-Capacitor Integrators and Gain Stages
asserted, the input is sampled and a charge is placed on Cs. During 2, the charge is
dumped on to the integrating capacitor. Ideally, this is modeled using the following
equation.

(1)

By using a discrete time representation, (1) can be rewritten as a difference equation.
When using a difference equation, it is assumed that the sampling is uniform (i.e. there
is a fixed sampling rate). Rather than using the continuous-time argument nT, a single
variable n is used. The use of brackets rather than parentheses also indicates that a sam-
pled-date difference equation is being used.

(2)

Recalling that Q=CV, the equation can then be coded as shown in Listing 4. In this

model, the input in is defined as a voltage, but the output is defined as wreal. For SC cir-
cuits, it is not necessary to use electrical or voltage variables since the capacitors force
charge conservation. Thus wreal nets can be used. The equation was broken up along
the two phases and charge variables are defined. The model uses two physical clock
inputs to fully model the effects of half-cycle delays in sampling. As with the real cir-
cuit, the final value of the input signal is sampled on the falling edge of 1. Note that
unlike the real circuit, the output goes valid on the falling edge of 2 and remains valid
until the next falling edge of 2. In order for a subsequent stage to correctly sample the
output of this stage, the two clocks need to be non-overlapping, just as in the real circuit.

LISTING 4 A model for a non-inverting SC integrator.

module noninvert_integ(out, in, phi1, phi2);
input in, phi1, phi2;
voltage in;
output out;
wreal out;
wire phi1, phi2;

parameter real Cs = 1p from (0:inf);
parameter real Ci = 1p from (0:inf);
parameter real agnd = 1.65 from (0:inf);
real state, qs;

initial begin
qs = 0.0;
state = 0.0;

end

always @(negedge(phi1))
qs = Cs(V(in)–agnd);

always @(negedge(phi2))
state = (qs + Ci(out–agnd))/Ci;

assign out = state + agnd;
endmodule

CIVO nT  CIVO nT T–() CSVI nT
T
2
---– 

 +=

Vo n  Vo n 1– 
CS

CI
------VI n

1
2
---–+=
12 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Modeling Switched-Capacitor Integrators and Gain Stages Data Converters
Also note that in this case, the signal is processed around a value of analog ground that
is supplied as a parameter.

For the inverting integrator, the input is directly coupled to the output during 2. The
difference equation can be derived as shown in (3).

(3)

The equation can be implemented as a model as shown in the listing below.

Note that in the model, the processing only occurs on the falling edge of 2. Additional
information on deriving difference equations and implementing them as models can be
found elsewhere [4].

4.3 Modeling the Effects of Finite Op-Amp Gain

The non-inverting integrator model can be easily extended to include second order
effects. To model finite gain in the op-amp, the difference equations must be modified.
Finite gain will create a residual voltage on the sampling capacitor CS at the end (falling
edge) of 2. If the open loop gain of the op-amp is AOL, the magnitude of the residual
voltage can be approximated by VO/AOL. Incorporating this change in the charge conser-
vation equation gives:

(4)

LISTING 5 A model for an inverting SC integrator.

module noninvert_integ(out, in, phi1, phi2);
input vin, phi1, phi2;
voltage in;
output out;
wreal out;
wire phi1, phi2;

parameter real Cs = 1p from (0:inf);
parameter real Ci = 1p from (0:inf);
parameter real agnd = 1.65 from (0:inf);
real state, qs;
initial begin

qs = 0.0;
state = 0.0;

end

always @(negedge(phi2)) begin
qs = Cs(V(in)–agnd);
state = (qs + Ci(out–agnd))/Ci;

end

assign out = state + agnd;
endmodule

Vo n  Vo n 1– 
Cs

CI
------Vi n –=

G 1
1

Aol
--------+=
13 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Modeling Switched-Capacitor Integrators and Gain Stages
(5)

Solving for VO[n] gives:

(6)

The core of the model to implement (6) appears as Listing 6.

4.4 Modeling the Effects of Non-linearities

Nonlinearity can be modeled in a similar fashion. The three major sources of nonlinear-
ity in a switched capacitor integrator are signal-dependent charge injection from the
switches, nonlinearity in the capacitors, and nonlinearity in the op-amp gain function.
To illustrate techniques for modelling nonlinearity, capacitor nonlinearity will be con-
sidered and can be modeled by using a Taylor Series Expansion about a nominal operat-
ing point.

(7)

For simplicity, assume only the first term of the Taylor Series is retained and that the
nominal operating point is V=0. The charge conservation equation can now be written
in two equations as:

(8)

LISTING 6 Code implementing an integrator with finite gain.

parameter real Cs = 1u from (0:inf);
parameter real Ci = 1u from (0:inf);
parameter real agnd = 1.65 from (0:inf);
parameter real Aol = 1e6 from (0:inf);
real state, qs, qi;

initial begin
qs = 0.0;
state = 0.0;

end

always @(negedge(phi1)) begin
qs = Cs(Aol/(Aol+(Cs/Ci)+1.0))(V(vin)–agnd);

end

always @(negedge(phi2)) begin
qi = state((Aol+1.0)/(Aol+(Cs/Ci)+1.0))Ci;
state = (qs + qi)/Ci;
qs = 0;

end

assign vout = state + agnd;

GCIVo n  GCIVo n 1–  CS VI n
1
2
---–

Vo n 
Aol

--------------– 
 +=

Vo n 
Aol 1+

Aol

CS

CI
------ 1+ +

------------------------------Vo n 1– 
CS

CI

Aol

Aol

CS

CI
------ 1+ +

------------------------------VI n
1
2
---–+=

C v  C0 1 1V 2V
2 + + + =

g V n   1 1V n +=
14 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Modeling Switched-Capacitor Integrators and Gain Stages Data Converters
(9)

Solving for VO[n] gives:

+ (10)

The difference equation is no longer linear and could be solved by iteratively choosing a
value for VO[n] until the solution converges. Since the system is oversampled, efforts
must be made to simplify the evaluation so that compute times are not excessive. The
initial choice in the iteration is obtained by assuming that (VO[n])2 is 0. Since  is
usually much less than 1, this term will be close to 0. A first-order simplification is to
calculate VO[n] under these assumptions, then subtract the 1(VO[n])2 term out to
obtain an estimate for VO[n]. This will allow the integration loop to consist of in-line
code without the need for extra iterations. Experience has shown that this simplification
does not adversely affect the simulation results if the linearity is small. A code listing
that implements the equation is shown in Listing 7.

Note that different non-linearity coefficients are used for the sampling and feedback
capacitors.

It is possible to use piecewise linear approximations for an op-amp transfer function to
implement non-linearity. This allows for stronger non-linearities than given by a Taylor
Series approximation. The application of this modeling technique is left to the reader.
The author’s experience has shown this can be very effective for modeling harmonic
distortion.

LISTING 7 An implementation of an integrator with capacitor non-linearity.

parameter real nlci = 1e–6 from (0:inf);
parameter real nlcs = 1e–6 from (0:inf);
real state, qs, qi;

initial begin
qs = 0.0;
state = 0.0;

end

always @(negedge(phi1)) begin
qs = cap_in(1.0+nlcs(V(vin)–agnd))(V(vin)–agnd);

end

always @(negedge(phi2)) begin
qi = state(1.0+nlcistate)cap_fb;
state = (qs + qi)/cap_fb
state = state – nlcistatestate;
qs = 0;

end

assign vout = state + agnd;

CIg Vo n  V
o

n  CIg Vo n 1–  Vo n 1–  CSg Vi n
1
2
---– 

 Vi n
1
2
---–+=

Vo n  1 Vo n  2 Vo n 1–  1 Vo n 1–  2+=+

Cs

CI
------ Vi n

1
2
---– 1 Vi n

1
2
---– 

  2
+ 

 
15 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Modeling Switched-Capacitor Integrators and Gain Stages
4.5 Combining Finite Gain and Capacitor Nonlinearity

The effects of finite gain and nonlinearity can be combined. A model can be derived that
combines both finite gain and capacitor nonlinearity. The model will not be presented
here due to space limitations.

4.6 Parasitic Input Capacitance of the Op-amp

The parasitic capacitance at the input of the op-amp can be quite large. In some op-
amps, the parasitic can be of the same magnitude as CS or CI. The effect of the parasitic
capacitance can be analyzed using difference equations. Under the assumption of finite
op-amp gain, charge redistribution will leave charge on both the sampling capacitor and
the parasitic at the input of the op-amp. This diminishes the overall apparent gain of a
switched capacitor integrator stage.

4.7 Integrator Settling

Settling time effects of the op-amps should also be carefully modeled since they can
provide a signal dependent offset when the settling is slew limited. A simple settling
model can be implemented by determining the ideal output, and then applying rules to
determine how well the op-amp settles. A simple single-pole op-amp model is charac-
terized by a time constant.

For a more advanced model, the settling period can be divided into a slewing region and
a linear settling region. A settling model with this concept has been used in simulating
oversampling A/D converters [5]. This simplified model does not account for the initial
capacitive feed-through in the integrator, but does provide a model for simulation. In
this model, there are three regions of operation, as shown in Figure 5.

FIGURE 5 Definitions of regions for settling time models.

linear settling

Combination slewing
with some linear
settling

Slew limited

VO SRexp
VO

SR
--------- 1–

TS


-----– 

 –

VO 1 exp
TS


-----– 

 – 
 

TSSRVO TS +

SR VO TS + SR

VO SR

Time Domain
View

Region of Operation Final Simulation
Output Value
16 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Modeling Noise in Switched-Capacitor Circuits Data Converters
If the integrator were ideal, the output would change by an amount Vo. It is assumed that
the time constant  of the single-pole system is less than the sampling period TS and the
integrator has a maximum slew rate SR. When the output step is small, the integrator
should settle with a one pole response. When slew limiting occurs, there will be a period
of slewing until the output is close to the final value, and then a time of linear settling. In
this model, the cutoff point between these regions is chosen to be at the time When
there is slewing in the model, the output slews to 1/(SR) of the final value and then set-
tles linearly in the remaining time. If the output is fully slew limited, then the output can
only change by the amount TSSR regardless of Vo.

This model can be implemented together with the other models for nonlinearity and
finite op-amp gain. The quantity Vo is calculated based on the equations developed pre-
viously for the integrator. The region of operation is then determined based on the ine-
qualities given in Figure 5, and the integrator output is calculated based on the output
value, also given in the figure. The same definitions could be made for a two-pole
model of settling.

4.8 Integrator Clipping

Switched-capacitor integrators are limited in swing by the compliance of the op-amp.
Implementing this in simulation requires only a minor addition. The output of the inte-
grator must be monitored and a hard limit applied when the output goes beyond a fixed
range. This should be done after the correction for settling effects. Extra features could
be added to model the soft saturation effects normally found in op-amps.

4.9 Continuous Time Models of the SC Integrator

The difficulty in modeling the settling time of the integrator suggests that a continuous
time model would provide advantages in studying the effects of settling time and non-
linear settling. However, there will be a significant trade-off in speed for accuracy. A
continuous time model would require the use of the analog solver. The previous models
only had an overhead of solving an equation and provided the voltage which is valid at
the falling edge of the clock. The analog solver would require the calculation of the
entire trajectory of the op-amp settling. For simulation of a circuit like an  modula-
tor, the discrete time models are favored to provide faster simulation.

5 Modeling Noise in Switched-Capacitor Circuits

During the sampling operation in switched-capacitor circuits, the resistive noise of the
sampling switch is captured on the sampling capacitor. The noise power is inversely
proportional to the size of the capacitance. Thus in A/D converters, there typically is a
size vs. noise trade-off. The effect of sampled data noise can easily be incorporated in
the simulation model. This section outlines how thermal and 1/f noise can be added to
the basic SC integrator model.

5.1 Generating White Noise

White noise has a flat power spectral density (PSD). The total noise power of the signal
is determined by integrating the PSD over the frequency range of interest. Since the
17 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Modeling Noise in Switched-Capacitor Circuits
PSD is the Fourier transform of the autocorrelation, a flat PSD indicates that the noise
samples are uncorrelated. Generation of a time-domain series representing white noise
is equivalent to generating a time sequence of uncorrelated random numbers. Gaussian
distributions are used since they are fully characterized by first and second order statis-
tics.

For switched-capacitor integrators, white-noise generators are used to model the noise
in the switches. As an example, consider the noise in a sampling switch connected to a
capacitor. The noise power associated with the switch resistance and the sampling
capacitor is kT/C with units of V2/Hz, where k is Boltzmann’s Constant, T is the abso-
lute temperature, and C is the size of the capacitor in Farads. The value of the voltage
noise power is independent of sampling frequency due to aliasing during the sampling
process.

To add noise to a Verilog model, the $random system task can be used. The $random
system task must be initialized with a seed value prior to the first call. It returns a 32-bit
integer value. The range can be set by using a modulo integer. For example, ($random %
b) will create a random integer in the range [-b+1, b-1]. The modified code for the input
sampling portion of the non-inverting integrator is shown in Listing 8.

The input voltage is modified by the standard deviation of the noise multiplied by a ran-
dom variable normalized to be in the range (-1, 1).

5.2 Generating 1/f Noise

Although 1/f noise is found throughout the natural world, algorithms for 1/f noise gener-
ation are not as pervasive. Modeling the noise near DC for A/D converters can be
important since this noise can dominate the overall baseband noise floor if not well con-
trolled. A promising approach for 1/f noise generation is to use the summation of
Lorentzian spectra. A Lorentzian spectrum is created by filtering white noise with a
one-pole filter. This approach has been used in instrumentation to generate continuous
time 1/f noise over a specified range of frequencies. It has been shown that a constant
distribution of 1.4 poles per decade gives a 1/f spectrum with less than 1% error [6]. By
changing the pole distribution, 1/f noise can be modelled. This model allows simula-
tion of 1/f noise in over a frequency region which can be defined to include the areas
near DC.

For discrete time, the spectral density can be approximated using sampling concepts.
(11) gives the power spectral density for summation of Lorentzian spectra. S(f) only has
an approximate 1/f spectra over a range defined by the values of n.

LISTING 8 Modeling capacitor sampling with additive kT/C noise.

// Boltzmann’s constant is defined as P_K in constants.h
‘include “constants.h”
parameter integer ival = 65536 from (0:inf);
parameter real fval = 65536.0 from (0:inf);
parameter T = 300.0 from (0:inf);

always @(negedge(phi1)) begin
qs = cap_in((V(vin)–agnd)+ sqrt(P_KT/cap_in)($random%ival)/fval);

end
18 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Modeling Noise in Switched-Capacitor Circuits Data Converters
 for f < N (11)

The magnitude response H for a Lorentzian spectrum and the power spectral density for
white noise filtered by H are given in (12).

(12)

The DC gain for the filter must be adjusted to give the Lorentzian spectrum.

In order to incorporate 1/f noise in a discrete time simulation, noise samples need to be
generated. Since 1/f noise has emphasized low frequency components, the aliasing
effects due to the sampled approximation are minimized. One way to obtain a discrete
time approximation by using the s-to-z mapping of (13) where TS is the sampling
period.

(13)

This represents backward-Euler integration and provides adequate results at the low fre-
quencies of interest. If higher frequencies need to be considered, the bilinear s-to-z map-
ping could be used. The approximate magnitude response H’ for the filter H is given in
(14).

 where x = TS p (14)

The corresponding power spectral density when white noise is filtered is given in (15).

(15)

Substituting this result into (11) gives (16) which is the power spectral density of the
proposed 1/f noise generator.

(16)

In order to match the magnitude of the spectral density S’(f) with the continuous time
counterpart, the input white noise generators must have the same noise power. For this
to occur, the variance or noise power in a certain bandwidth must be set equal. In this
case, the input white noise generators in the continuous time model of (11) have spectral
density . In the bandwidth fS, they will have noise power fS. Thus in the discrete time

S f  
n

f
2 + n

2

n 1=

N

 
f
---=

H j2f  p
j2f p+
--------------------= S f  H jf  22 p2

f
2

p
2

+
----------------= =

s
1 z

1–
–
TS

----------------=

H z 

TS p

1 TSp+

1
1

1 TSp+
------------------z

1–
–

TS x

1 x+

1
1

1 x+
------------z

1–
–

-----------------------------= =

S f 
TS

x
1 x+
------------ 
 

2
2

1 2
1

1 x+
------------ 
  2f

fS
-------- 
 cos–

1
1 x+
------------ 
  2

+

--=

S f 

x
1 x+
------------ 
  2

1 2
1

1 x+
------------ 
  2f

fS
-------- 
 cos–

1
1 x+
------------ 
  2

+

--2
TS

n 1=

N

=
19 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Modeling Noise in Switched-Capacitor Circuits
simulation, the proper value to use for TS is the noise power of the continuous time
white noise generators, which in this case is fSTS =  a quantity that is independent of
frequency.

The noise generator can be implemented as shown in Figure 6. The frequency response

of one implementation is shown in Figure 7 along with the 12 approximate pole values

used in the generator model. In addition, a plot of the deviation from a true 1/f response
shown in Figure 8. It shows little variation over the low frequency range of interest. The
downward trend indicates that the simulation model provides noise with a 1/fcharac-
teristic where  is slightly less than 1. There is little ripple since a high pole density was
used across the interval.

To set the value of variance for the input white noise generator, consider the example of
a MOS transistor. The equivalent input-referred noise can be modelled as in (17).

(17)

The parameter TS should be set equivalent to the factor Kf /(WLCox) in magnitude.
For the simulation, the output of the 1/f noise generator is placed so that it adds to the

FIGURE 6 Summation of approximate Lorentzian spectra to obtain a 1/f noise model.

FIGURE 7 Frequency response of a 1/f noise generator.

Gaussian
White Noise
Generator

+

+

g[0]
p[0]

+

z-1g[n]
p[n]

Gaussian
White Noise
Generator

Simulated
1/f Noise

z-1

0.001 0.01 0.10.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Relative Frequency (f/fs)

Magnitude in dB

1/f plot

Simulation Result

Approximate Pole Locations:
0.999999 0.999996
0.999988 0.999957
0.999848 0.999467
0.998130 0.993464
0.977424 0.925124
0.782805 0.560099

veq
2 Kf

WLCoxf
--------------------=
20 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Algorithmic and Pipelined A/D Converters Data Converters
input signal of the MOS transistor. It is interesting to note that a set of samples from the
1/f noise generator does not give any information about the sampling rate. In fact, a sin-
gle set of samples can be used as 1/f noise regardless of the sample rate. This scalability
is a characteristic of 1/f noise. It will look the same no matter what resolution is used.
This phenomenon has been exploited in the generation of fractal images.

A listing for code to generate 1/f noise is shown in Listing 9. Both flicker and white
noise is added to create the output sample. An output sample is created every time the
signal clk has a rising edge. The pole locations for the Lorentzian spectra are calculated
in the initial block. This could have been hard-coded as numerical values just as easily
as calculating them in the initial block. Samples from this code could be added to volt-
age samples in an actual circuit model.

Several theories have been advanced for the cause of 1/f noise in MOSFETs. A widely
accepted view attributes it to generation-recombination noise at the silicon-oxide inter-
face where the traps are characterized by a distribution of time constants. The model
simulates this physical mechanism since a distribution of time constants gives rise to
something similar to a summation of Lorentzian spectra. Analysis using these assump-
tions gives rise to (17) for a MOSFET which shows that 1/f noise is inversely propor-
tional to gate capacitance.

With the basic understanding of switched-capacitor circuits, it is now time to focus on
the actual converter architectures.

6 Algorithmic and Pipelined A/D Converters

Flash converters use 2n1parallel comparisons to obtain a fast n-bit A/D conversion.
The speed is limited by the comparison time and the encoding time, and conversion is
achieved in one clock cycle. Another way to achieve A/D conversion is to use an algo-
rithmic approach. The functional example of Section 2 is an example of an algorithmic
approach where it may take many operations and clock cycles to achieve the A/D con-
version. The approach used in the functional example is essentially how algorithmic and
pipelined converters work. Figure 9 shows a circuit that would implement one pass
through the code.

FIGURE 8 Deviation between the true 1/f response and the simulation result.

0.00001 0.0001 0.001
-1.6

-1.4

-1.2

-1.0

-0.8

Relative Frequency (f/fs)

Deviation in dB
21 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Algorithmic and Pipelined A/D Converters
LISTING 9 Verilog-AMS code for generating sampled 1/f noise and white noise.

module fwnoise(clk, out);
input clk;
wreal out;
real high, low, tlow, interval, fout;
integer numPoles, seed, i, j, number;
reg [11:0] poles, gain, state;
parameter real wnStdDev = 1e-6 from [0:inf);

initial begin
seed = 32;
high = 1;
low = 0.000001;
number = 12;
tlow = $log(low);
interval = ($log(high) - tlow)/(number-1);
for (i = 0; i < number; i = i + 1) begin

poles[i] = $atan($pow(10.0, tlow + intervali));
poles[i] = $atan($pow(10.0, tlow + intervali));
gain[i] = $sqrt(poles[i]);
poles[i] = 1.0/(1.0 + poles[i]);
// initialize the states
state[i] = 0.0;

end
end

always @(posedge(clk)) begin
out = 0.0;
// Calculate the 1/f noise sample
for (j = 0; j < number; j=j+1) begin

fout = state[j] + $rdist_normal(seed, 0.0, gain[j]);
state[j] = fout  poles[j];
out = out + fout;

end
// add in white noise
out = out + $rdist_normal(seed, 0.0, wnStdDev);

end
endmodule

FIGURE 9 One cycle of an algorithmic A/D conversion.

0 1

Vref

x2

In

Vref

Out

1-bit A/D 1-bit D/A
22 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Algorithmic and Pipelined A/D Converters Data Converters
A flash conversion is first performed on the input. In IC applications, the conversion is
typically of low resolution, from 1 to 4 bits. A D/A operation is performed using the
result and then subtracted from the input signal. The resulting voltage is called a resi-
due. The residue is then amplified by a fixed amount. In the simplest case, the amplifi-
cation factor is 2n, where n is the number of bits for the A/D converter. This circuit
produces n bits of the conversion, and restores the signal level so the next stage receives
an input that can vary over the full scale of the reference voltages.

There are two ways to use this circuit. If a sample and hold circuit is added, the result
can be recirculated through the same circuit. This is what is known as a cyclic or algo-
rithmic A/D converter. The same hardware is used to do successive iterations of the con-
version algorithm. If one bit is created per iteration, it takes n iterations to achieve an n-
bit conversion. Another option is to create several instances of the stage and operate
them in a pipelined fashion. If one bit is created per stage, it still takes n cycles to
achieve an n-bit conversion, but the output rate can still be n bits per cycle with n cycles
of latency. For the remainder of this section, the discussion will focus on the pipelined
version of the converter.

Note that each stage in a pipelined converter creates bits that must be assembled in a
time-staggered fashion. The digital logic needed to capture the bits is modest. Digital
correction schemes can be implemented to ease design constraints. A digital correction
method for comparator offset will be illustrated in Section 6.2.

The pipeline converter has proven to be a power efficient, reliable, and expandable con-
verter for 8 to 10 bit conversion in the 10 to 40 MHz range. These specifications made it
suitable for consumer analog video applications. It can be implemented in a standard
digital CMOS process providing a low cost solution that can be integrated with other
digital circuits. Techniques have been developed to add resolution at the expense of
speed or to increase the speed through parallel pipelines.

6.1 Modeling the Pipelined Converter

The functional model of Listing 1 can be used to model the high-level behavior of a
pipelined converter. In order to model the second order effects of the converter, a more
structural approach needs to be taken. The model can be built around the basic building
block description of the converter shown in Figure 10. The blocks shown in this figure
will be discussed in more depth in the next few sections. The structural approach allows
freedom in substituting more detailed models when non-idealities need to be studied.
The following sections will focus on behavioral modeling of switched capacitor integra-
tors and on a technique for digital correction for comparators.

6.2 Digital Correction for Comparator Offset

Before creating the full model of a pipelined converter, the issue of digital correction
will be discussed. As mentioned previously, each stage of the pipeline is designed to
convert a number of bits. The design of the comparators used in the Flash A/D converter
can be quite difficult as discussed previously. A missed decision early in the pipeline
will destroy the conversion and may lead to large code errors.

As mentioned in Section 3.3, the comparator offset needs to be smaller than the stepsize
of the flash converter. However, when used in the pipeline converter, the step-size is not
set by the stage A/D resolution but by the overall resolution of the converter down-
23 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Algorithmic and Pipelined A/D Converters
stream from the current stage. For example, the resolution of the first stage conversion
of an 8-bit converter must be accurate to the 8 bit level even though the first stage flash
may only provide 2 bits. The comparator gain also must be large enough to cause a full
scale output transition at less than a step-size of overdrive. The speed of the comparator
is important, because the longer the worst case evaluation time, the less time available
to the switched-capacitor integrator for settling.

To overcome this problem, designers have favored the use of a digital correction scheme
for comparator offset. It is typically implemented by using a scheme that provides 1.5
bits per stage in the pipeline. More detailed descriptions of this scheme can be found in
the literature [7]. Basically, two comparators are used to give three possible output
states or 1.5 bits as shown in Figure 11. Two of the three states cause the output or con-

version bit to be set to 1 or 0 for the stage. The third state indicates that an error was
made in a previous stage and a correction of subtracting by 1 is needed for the output
code. Theoretical analysis shows that under this scheme, the comparators can have
fairly large offsets (up to +/Vref/4) while still providing accurate conversion. The net
result is that fast and simple latch type comparators can be used in place of high preci-
sion comparators. This eases the design constraints and provides a solution that has
lower power and area.

FIGURE 10 A switched capacitor pipeline stage providing 1.5 bits per stage.

FIGURE 11 Comparators and states for encoding 1.5 Bits per stage conversion.

+

1

1

2

12+

+

Vref+
Vref-

C

CVin
Vout

Vref+/4

Vref-/4

D1

D0

+

+

Vin

Vref+/4

Vref-/4

D2

D1

Vref+/4

Vref+

Vref-

Vref-/4

0 1

1 1

1 0

1

0

0

no correction

no correction

subtract 1

D2D1
Conv.
Bit

Correction
Action
24 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Algorithmic and Pipelined A/D Converters Data Converters
The digital correction scheme not only simplifies the analog design task but also the
behavioral modeling in most cases. Since the latched comparators are used, the behav-
ioral model can again avoid the use of the analog block. The listing for a comparator
implementing the comparison to Vref+/4 is shown in Listing 10. Note that in the model,

wreal nets are used for inputs and outputs, avoiding the use of electricals since conser-
vation of charge is not needed. Also note that the input inp is the input signal, while inm
is a full scale reference voltage. The input signals are assumed to be positive and refer-
enced to an analog ground, defined to be Vcc/2.

6.3 Modeling the SC S/H and Gain Stage

For the 1.5 bits/stage architecture, the interstage amplifier must have a gain of two. The
basic gain stage is shown in Figure 12. In the figure, the equivalent circuits for phase 1
and 2 of the clock are shown. It is assumed that the two capacitors are nominally equal
in value. In the first phase, the input is sampled on the two capacitors. In the second
phase, two things happen. If the DAC output were analog ground, all of the charge on
capacitor C2 would flow onto C1, and an exact multiply by two would be achieved. By
superposition, the DAC output voltage subtracts from the output result because the SC
circuit is in an inverting configuration. Thus the circuit as shown achieves multiply by
two, sample and hold of the input on the falling edge of 1, and summation of the DAC
voltage.

LISTING 10 Verilog AMS description of a latched comparator.

module compinp (inp, inm, clk, dout);
input inp,inm,clk;
output dout;
reg dout;
wreal inp, inm;
parameter real vcc = 3.3 from (0:inf);
parameter real tdel = 2.0 from (0:inf);
real vagnd;

initial begin
dout = 0;
vagnd = vcc/2.0;

end

always @(negedge(clk)) begin
if (inp > 0.25(inm–vagnd) + vagnd) begin

#tdel
dout = 1;

end else begin
#tdel
dout = 0;

end
end

// model precharge reset
always @(posedge(clk))

dout = 0.0;

endmodule
25 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Algorithmic and Pipelined A/D Converters
A code listing for a model of this circuit is shown in Listing 11. Note that as in previous
models, wreal nets are used for inputs and outputs. The DAC is decoded within the
model based on the two bits that are generated by the comparators. The comparator
encoding scheme leaves the possibility of one unused state. In this case, an error mes-
sage is printed to alert the user.

6.4 Digital Logic

A simple model for the digital logic can be created by storing for each stage the D0 bit
and a bit indicating if correction was needed. A staggered scheme is needed to ensure
that all the bits are time synchronized. At the end of the pipeline, there should be two n-
bit registers, one with the D0 bits and one with the correction bits. A simple subtraction
suffices to create the final corrected conversion word. The output will be conveniently
represented in two’s complement arithmetic. A code listing implementing this for an 8-
bit converter is shown in Listing 12.

6.5 A Complete Pipeline A/D Model

A complete pipelined A/D model is created by combining the modules shown in the
previous sections. A testbench can then be created and the model exercised. Note that in
the last stage, the final bit is generated by comparison using a single comparator.

6.6 Modeling Non-Idealities in the Pipelined Converter Stage

The basic 1.5 bits per stage model can be extended to handle various non-idealities. A
few of these will be examined in the following sections.

6.6.1 Gain Errors

The architecture relies on a precise multiplication by two to achieve accurate conver-
sion. If the stage gain deviates from exactly two, there will be an error in the conversion.
A small amount of error can be tolerated and the error can be larger in later stages of the

FIGURE 12 Block diagrams illustrating an SC interstage gain and a S/H amplifier.

+

1

1

2

12

C1

C2
Vin

Vout

DAC Output

Vin

C1

C2

+

C1

C2

VoutDAC
Output

Equivalent 1 Circuit

Equivalent 2 Circuit
26 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Algorithmic and Pipelined A/D Converters Data Converters
pipeline. The exact size of the error is a function of the overall converter resolution [8].
The gain is controlled by the capacitor variations. In the model, the gain of two is
achieved by using two equally sized capacitors to sample the input and then combining
the charge on one of the capacitors to achieve a gain of two. Capacitor variations depend
on the physical size of the capacitor and the precision of etching in the process. A large
capacitor will have less variation than a small capacitor. To model the gain error, a devi-
ation can be added to the capacitor values. This can be done during the initial step using
$random, or it can be hard-coded into the model.

6.6.2 Differential Modeling

The model shown in this example is set up for single ended circuit operation. A differ-
ential model could also be used but there are several difficulties with implementing a
differential model. A differential signal requires a common mode operating point. One
method of implementing this is to use two single ended circuits operating off of a com-

LISTING 11 SC interstage gain amplifier model.

‘include “disciplines.h”
// Input sampling on phi1, DAC and integration take place on phi2
module scgain (in, out, refp, refm, d1, d2, phi1, phi2);
input in,phi1,phi2,d1,d2;
output out;
wreal in, out, refp, refm;
wire d1, d2;

parameter real vcc = 3.3 from (0:inf);
parameter real cap_in = 1.0 from (0:inf);
parameter real cap_fb = 1.0 from (0:inf);
parameter real tdel = 1n from (0:inf);
real vagnd, qc1, qc2, qc1p2, state;

initial
vagnd = vcc/2.0;

always @(negedge phi1) begin
qc1 = (in–vagnd)cap_in;
qc2 = (in–vagnd)cap_fb;

end

always @(negedge phi2) begin
if (!d1 && d2) begin

 qc1p2 = –(refp–vagnd)cap_in;
end else if (!d1 && !d2) begin

qc1p2 = 0.0;
end else if (d1 && !d2) begin

qc1p2 = –(refmvagnd)cap_in;
end else begin

// error state in decoding
qc1p2 = 10.0;

end
state = (qc1 + qc2 + qc1p2)/cap_fb + vagnd;

end

assign out = state;
endmodule
27 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Algorithmic and Pipelined A/D Converters
mon voltage reference. This adds complexity and may not add significant information
content for modeling problems in a differential circuit. Three reasons for using differen-
tial modeling will be discussed.

6.6.3 Examining Effects of Common-Mode Feedback Errors

One complication of using differential circuits is the need for a common-mode feedback
circuit in the amplifiers. This circuit establishes the common-mode operating point for a
true differential amplifier. Typically, there are time constants associated with the settling
of the common-mode operating point. If the settling is not fast enough, it may be possi-
ble to convert some common-mode errors to differential signals. This is an indication of
an incorrectly designed circuit. These effects can be modeled, but should be handled in
a more detailed amplifier model that can be embedded within the gain stage model.

LISTING 12 Digital logic for an 8-bit pipelined conversion.

module correction(s, c, out, clk);
input [6:0] s, c;
output [7:0] out;
input clk;
reg s1, c1;
reg [1:0] s2, c2;
reg [2:0] s3, c3;
reg [3:0] s4, c4;
reg [4:0] s5, c5;
reg [5:0] s6, c6;
reg [6:0] s7, c7;
reg [7:0] s8, c8, out;
reg tmp;

initial
tmp = 1’b0;

always @(posedge clk) begin
s8[7] = tmp; s8[6:0] = s7[6:0];
c8[7] = tmp; c8[6:0] = c7[6:0];
s7[6:1] = s6[5:0]; s7[0] = s[0];
c7[6:1] = c6[5:0]; c7[0] = c[0];
s6[5:1] = s5[4:0]; s6[0] = s[1];
c6[5:1] = c5[4:0]; c6[0] = c[1];
s5[4:1] = s4[3:0]; s5[0] = s[2];
c5[4:1] = c4[3:0]; c5[0] = c[2];
s4[3:1] = s3[2:0]; s4[0] = s[3];
c4[3:1] = c3[2:0]; c4[0] = c[3];
s3[2:1] = s2[1:0]; s3[0] = s[4];
c3[2:1] = c2[1:0]; c3[0] = c[4];
s2[1] = s1; s2[0] = s[5];
c2[1] = c1; c2[0] = c[5];
s1 = s[6];
c1 = c[6];
// output is in 2’s complement format
out[7:0] = s8[7:0] – c8[7:0];

end
endmodule
28 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Algorithmic and Pipelined A/D Converters Data Converters
6.6.4 Noise Immunity Provided by Differential Circuits

Differential circuits are often adopted for their superior power supply noise rejection.
Supply noise is injected symmetrically on the signal path nodes, thus the noise appears
as a common-mode signal and is rejected. Noise simulations of this magnitude require
accurate modeling of the op-amp and the settling process. This type of noise modeling is
beyond the scope of this paper.

6.6.5 Charge Injection Errors Mitigated by Differential Bottom-Plate Sampling

Another reason for choosing a differential implementation is to incorporate a more
accurate sampling circuit. In a single-ended implementation, a single sampling switch is
used to acquire the signal on to the sampling capacitor. The switch is typically an MOS
transistor. The key problem is that the channel charge in the transistor is a function of
the input voltage. During the turn off of the switch, a signal dependent charge can be
dumped from the channel on to the sampling capacitor [9]. This introduces a signal
dependent charge error that appears as non-linearity. To avoid the charge injection from
the switches, a differential bottom plate sampling scheme is often used [10].

In studying this effect, a single-ended architecture can still be used with a behavioral
model for charge injection. The necessary modification is to add a small charge to the
capacitor that is dependent on the input voltage as referenced to ground. A simple math-
ematical derivation follows.

Consider the clock edge and sampling switch circuit shown in Figure 13. Assuming the

clock edge is slower than the time for the device to turn off, the two sides of the switch
will be equalized by the transistor until it reaches the threshold voltage. At this point,
the device will turn off. The maximum offset error caused by the sampling operation is
shown in (18).

(18)

Note that this equation contains a signal dependent portion and a fixed offset. If a differ-
ential circuit is used, the fixed portion will approximately cancel if the switches are per-
fectly matched. The signal dependent portion can be calculated and added in the model.
Note that this model is only a rough approximation.

FIGURE 13 Illustration of charge injection with an NMOS switch.

Vin

Vclk Vhi

Vlo

Cs

Vin + Vt
Vin

Clock Waveform

Switch on

Switch off Cs

Cg

Equivalent
Charge Sharing
Circuit

Vos

Cg

Cg CS+
------------------- Vi VT VL–+ 

CgVi

Cg CS+

Cg VT VL– 
Cg CS+

------------------------------+==
29 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Oversampling Noise Shaping A/D Converters
6.6.6 Noise Modeling

As discussed previously, the thermal sampling noise of capacitors can be modeled. If
the capacitors are not sized correctly, thermal noise will limit the resolution of the con-
verter. Even though more bits may be calculated, they will not have significant informa-
tion in them. One way to see this would be to add the noise to the model and then
convert a single DC value and see how many codes are obtained.

To add noise to the model, two noise contributions need to be added for the two input
sampling operations. Temperature also needs to be a consideration since the noise
increases with temperature.

6.6.7 Power vs. Area Trade-offs

As shown in the behavioral model, the pipeline converter is easily implemented by
designing a single stage and then replicating it. In this approach, the stage has to be
designed for the worst case, which is the first stage. However, the requirements on
matching accuracy and noise decline for each of the following stages. To save power
and die area, it can prove advantageous to optimize each stage for it’s own requirements
[11]. This can be done in behavioral modeling by paying attention to capacitor sizing for
mismatch and kT/C noise. In addition, models for integrators need to be sized to ensure
adequate settling time for the signals.

7 Oversampling Noise Shaping A/D Converters

Oversampling A/D converters are attractive for IC implementation since they can be
realized in standard CMOS and have been used to demonstrate greater than 16 bit reso-
lution without the need for trimming or precision analog circuitry. The term oversam-
pling A/D converter is usually applied to the combination of a noise shaping coder or
modulator and a set of digital filters as shown in Figure 14.

7.1 Modulators for Oversampling A/D Conversion

Oversampling modulators are related to Delta Modulators. They were initially proposed
as a means of overcoming some of the problems encountered in Delta Modulation. They
are referred to as modulators since they were first used to encode telemetry information
in a bit stream. Inose and Yasuda, the researchers who developed the method, named it
modulation [12]. Later researchers have also used the name modulation which
has caused some confusion. In this section, the terms modulator and noise shaping coder
will be used interchangeably to describe these circuits. This section will provide an
overview of oversampling, quantization noise, noise shaping, and the different types of
modulators currently in use.

FIGURE 14 Block diagram of an oversampling and noise shaping A/D converter.

Analog
Modulator

Digital
Decimation

Filters
30 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Oversampling Noise Shaping A/D Converters Data Converters
7.2 Quantization Noise and Oversampling

The process of signal quantization consists of sampling a signal and then assigning each
sample a digitized representation. The quantization error is defined to be the difference
between the actual analog value and the digitized representation that is assigned to the
sample. Uniform quantizers use the same step size for each digital level assigned to a
value. In a linear 8 bit A/D converter, for example, there are 256 levels equally spaced
across the full scale voltage range.

Quantization can be modeled using an additive error signal e(t) to simulate the actual
quantization noise. If the quantizer has a resolution larger than 2 bits and if the input sig-
nal is active, the error signal e(t) will tend to a uniform distribution on the interval
defined by the quantizer step size. Consecutive samples from e(t) appear to be statisti-
cally independent and the quantization noise can be modeled using white noise. Assum-
ing that the errors are uniformly distributed and that the step size is , it can be shown
that the quantization error has power 2/12. A simple model for an A/D converter can
be implemented by adding white noise of with power /12 to the original signal.

By using the additive white noise model, the effects of oversampling can be studied. If
the signal is oversampled by a factor of two, the total quantization error still has power
/12, but it is spread over a larger frequency region. Figure 15 illustrates this using

power spectral densities s(f). An ideal low pass filter can be used to limit the signal
bandwidth to fs, eliminating half of the noise power and increasing the signal power to
noise power ratio by two. Since the signal is now band limited, it can be resampled at
half the rate to provide data at the original desired rate. When using higher oversam-
pling ratios, we find that each octave of oversampling provides a gain of 3 dB in SNR
when perfect digital filtering is used. Note it is only 3 dB because SNR is expressed as a
voltage ratio and not a power ratio.

For sinusoids, it can be shown that if a full scale signal is quantized using an N-bit quan-
tizer, the SNR will be given by (19).

(19)

The 3 dB gain per octave of oversampling translates into 1/2 bit in effective resolution
for an A/D converter. This illustrates the fundamental trade-off of resolution for speed

FIGURE 15 Power spectral density of the quantization noise for two sampled signals.

Power Spectral Density

2fsfs

s1(f) = D2/(12fs)

s2(f) = s1(f)/2

0 frequency

SNR 6.02N 1.76+ dB=
31 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Oversampling Noise Shaping A/D Converters
in A/D converters. Rather than using better A/D converters which can require costly
trim steps, designers can use oversampling and digital decimation filtering which adds
costs in on-chip digital filters. The gains through oversampling are limited, since a two
bit gain in converter performance requires a signal to be oversampled by a factor of 24 =
16. A better solution is to gain more resolution per octave of oversampling by using
noise shaping along with oversampling.

7.3 Noise Shaping and the  Modulator Family

Noise shaping is achieved by pushing quantization noise away from a particular region
of interest. It can be implemented using the  modulator shown in Figure 16. The cir-

cuit consists of an integrator in a feedback loop with an A/D and a D/A converter. In the
figure, 1-bit A/D and D/A converters are used, but noise shaping will occur regardless
of the number of bits in the converters. To examine how noise is shaped, the A/D con-
verter can be replaced with an additive white noise source to provide the signal flow
graph shown in Figure 17.

The transfer functions for the linearized flowgraph of Figure 17 can be easily analyzed
using feedback theory. The transfer function from input to output is given in (20)

(20)

The transfer function from the noise source to the output is given in (21).

(21)

FIGURE 16 Block diagram of a first order  modulator.

FIGURE 17 Linearized model of the first order delta-sigma modulator.

+
-





1-bit
D/A

1-bit
A/D

++
-

z-1 +
Y(z)

N(z)

X(z)

Y z 
X z 
----------- z

1–
=

Y z 
N z 
----------- 1 z 1––=
32 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Oversampling Noise Shaping A/D Converters Data Converters
(20) is a delay, which causes no signal distortion while (21), the noise transfer function,
is high pass. The quantization noise has been shaped away from the low frequency base-
band region. It must be stressed that this analysis is based on simplified assumptions,
but it gives good first-order insight.

These noise shaping results can be verified in simulation. The FFT of the output of a
modulator with a sinusoidal input is shown in Figure 18. The input signal passes

through the modulator with no distortion or attenuation but the quantization noise is
shaped with a high pass response. If the high pass noise was filtered out, the original
sinusoid could be recovered with high resolution since the low quantization noise region
would be preserved.

The gain in SNR per octave of oversampling can be calculated by using (21). It is
assumed that the 1-bit A/D converter contributes additive white noise with power eo

2 =
/12 and the sampling period is . The power spectral density of the noise at the output
of the modulator can be derived from (21).

(22)

To find the total in band noise, the power spectral density must be integrated from 0 to
, the highest frequency of interest. After performing the integration, the in-band noise
power N can be expressed by (23).

(23)

This can be simplified if the sine function is approximated by the first 3 terms of a Tay-
lor’s Series expansion, giving (24).

FIGURE 18 FFT output of a second-order  modulator with sinusoidal input.

0.00 0.05 0.10 0.15 0.20 0.25

-120.0

-100.0

-80.0

-60.0

-40.0

-20.0

0.0

Normalized Frequency

Amplitude in dB

PSD 2eo
2

2 2 cos– =

N
2eo

2


-------- o osin– =
33 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Oversampling Noise Shaping A/D Converters
 where fo = o/2 (24)

If we assume that the power of the largest possible input sinusoid is  and define the
oversampling ratio OSR to be 1/(2f), the SNR is given by (25).

(25)

Thus each time OSR is doubled, the SNR increases by 9 dB, which translates to 1.5 bits
in effective resolution for an A/D converter per octave of oversampling.

More noise shaping can be achieved using a second order modulator which is
shown in Figure 19. Under suitable assumptions, the transfer function for noise and sig-

nal can be expressed as in (26).

(26)

The SNR value can be calculated using the method described previously giving (27).
For each octave of oversampling, a 15 dB gain in SNR is achieved.

(27)

These calculations estimate the possible resolution that could be achieved if a perfect
brick wall filter were used to eliminate the out of band noise. While the equations are
not accurate for design work, they do illustrate the major advantages of oversampling A/
D converters. The modulators tend to be simple, requiring a few op-amps, capacitors,
and comparators. Since little precision analog circuitry is required, these units can be
implemented on-chip with digital signal processing systems.

The additive white noise model ignores the nonlinear behavior of the loop. First and
second order modulators exhibit tones that are created by limit cycles in the loop.
However, first and second order modulators are inherently stable. Higher order
modulators based on cascades of integrators, like the one shown in Figure 20, have been
studied, but stability problems make them less attractive than the first and second order
modulators.

FIGURE 19 Block diagram of a second order  modulator.

N
eo

22

3
----------- 2fo 3

SNR
6

--- OSR 

3
2

=

+
-





+
-





1-bit
D/A

1-bit
A/D

Y z  E z  1 z
1–

– 
2

X z z 1–
+=

SNR
60

2
---------- OSR 

5
2

=

34 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Oversampling Noise Shaping A/D Converters Data Converters
7.4 Developing Accurate High-Level Simulation Models

Behavioral modeling has been used from the beginning in the design of oversampling
A/D converters. Circuit simulation approaches were too computationally expensive to
provide meaningful results for analysis. The key problem is that oversampling forces
many clock cycles to be simulated for each output sample. In 1993, a simulation
required 2 weeks of CPU time to create 500 output data points. This simulation would
be much faster on today’s machines, but still would be in the hours range. The key prob-
lem in using a Spice approach to simulate the oversampling converter is the need to sim-
ulate all of the transient effects at high accuracy. A typical second order modulator may
use an oversampling ratio of 256. To create 1024 output samples, 262,144 clock cycles
need to be simulated. For 16-bit resolution, the numerical dynamic range of 96dB. Sim-
ulator tolerances are typically in the range of 80 dB when tolerances are set high. Each
cycle requires calculation of the settling of the two op-amps. The simulation takes a
long time, may not show the full resolution, and does not model noise effects. Behav-
ioral modeling provides the possibility of a large speed up (100-200X), but circuit
designers are wary of loss of accuracy or missing the effects of parasitics.

In order to create fast and accurate simulation models of the analog modulators domi-
nant performance limiters must be identified and modeled. Experience has shown that
behavioral modeling can be quite effective in predicting the behavior of oversampling
A/D converters. For circuit design, previous studies have shown how to identify key
problems and quantify the sensitivity of the design to the particular non-ideality.

A reasonable model can be built using the models for switched-capacitor integrators
described earlier in this paper. This model can be applied to a variety of circuit imple-
mentations, and with care, good agreement can be obtained with actual circuit imple-
mentations. In the remainder of this section, a brief description for each of the main
modulator types will be given and the key issues for modeling the modulators will be
reviewed. Details on the actual design and theory of operation can be found in the liter-
ature [15].

7.4.1 Low Order Modulators

The low order modulators include the first and second order modulators. Models for
these circuits were pioneered by Hauser [13] and Boser [14]. Both used discrete time
models coded in C or C++ to provide analysis of the limits of performance for the cir-
cuits. They identified several key circuit issues such as op-amp gain, capacitor non-lin-
earity, and settling time and simulated the performance. Lower order modulators are
attractive because they can be easily implemented in standard digital CMOS and are

FIGURE 20 A third order  modulator using triple integration.

-





1-bit
A/D

-





+

-





1-bit
D/A

++
35 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Oversampling Noise Shaping A/D Converters
inherently stable and have been used to achieve up to 16 bit resolution. They provide a
good trade-off for small, easy-to-design analog blocks that can be combined with fairly
small digital filters. The main drawbacks are the need for comparatively large oversam-
pling ratios, and the presence of limit cycle tones due to pattern noise.

The basic model for a first order modulator is shown in Listing 13, once again using a

single-ended implementation. An initial block was removed from the listing to save
space. Note that the DAC function is implemented in a separate block that evaluates on
the rising edge of . The two integrators are evaluated on the falling edge of 

LISTING 13 Basic Verilog-AMS model for a second order delta-sigma modulator.

‘include “discipline.h”
module delsig2(dout, in, phi1, phi2);
input in, phi1, phi2;
electrical in;
output dout;
reg dout;
wire phi1, phi2;
parameter real cs1 = 1u from (0:inf);
parameter real ci1 = 1u from (0:inf);
parameter real cs2 = 1u from (0:inf);
parameter real ci2 = 1u from (0:inf);
parameter real agnd = 1.65 from (0:inf);
parameter real vrefm = 1.15 from (0:inf);
parameter real vrefp = 2.15 from (0:inf);
real state1, state2, qs1, qs2, dacval;

initial begin
qs1 = 0.0; qs2 = 0.0; state1 = 0.0; state2 = 0.0;
dacval = vrefm – agnd;

end

always @(negedge(phi1)) begin
qs1 = cs1(V(in)–agnd);
qs2 = cs2(state1);

end

always @(negedge(phi2)) begin
state1 = (qs1 + ci1state1 – dacvalcs1)/ci1;
state2 = (qs2 + ci2state2 – dacvalcs2)/ci2;

end

always @(posedge(phi2)) begin
if (state2 > 0.0) begin

dout = 1;
dacval = vrefp – agnd;

end else begin
dout = 0;
dacval = vrefm – agnd;

end
end
endmodule
36 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Oversampling Noise Shaping A/D Converters Data Converters
7.4.2 Non-Idealities

Note that the model is similar to the switched-capacitor models shown in Section 4. To
add the effects of finite gain, capacitor non-linearity, or finite settling time, the model
only needs to be modified according to the proper template.

7.4.3 Limit Cycles

A key problem with the low order modulators is the presence of tones in the output
spectrum due to pattern noise. Pattern noise arises because the modulator circuit
encodes the input signal as a pulse density modulated output. For DC input values that
can be expressed as rational fractions of the input reference, it is possible for a repeating
pattern to set up. In the first order modulator, the easiest pattern to identify is when the
input is one half of the reference. If a positive and negative references are used, the
input would need to be at zero. In this case, the limit cycle oscillation is the pattern
10101010...

Behavioral models are particularly suited towards investigating the effects of tones in a
system. Many simulations can be run in a short time to isolate patterns or to see if pat-
terns exist. Other random noise sources or additive dither can often provide enough
noise to disrupt the patterns. This can be studied using the models. First-order modula-
tors were effectively used in telephony applications because the voice signal provides
enough randomness to overcome the tones.

7.4.4 Multistage Noise Shaping

A key benefit of the first and second order modulators is the stability of the modulators.
One way to obtain the equivalent high order transfer function is to use the multistage
noise shaping approach. In this approach low order modulators are cascaded. The key to
the approach is that the noise from the first stage is requantized and recombined in a
way that cancels out the noise, providing an approximation to the higher order loop
noise transfer function. The approach can be effective because it maintains the fast set-
tling time of a low order loop. However, if first order modulators are used, the limit
cycle noise provides an output that is hard to predict. A more important limitation is the
need for high gain op-amps. Without these, some quantization noise is not cancelled and
leaks through to the later stages. The problems with limit cycle noise can be lessened by
using a second order loop as the first stage. Since more noise shaping is performed in
the first loop, there is less sensitivity to lower gain and fewer problems with limit cycle
noise.

Behavioral models are effective in accessing the effects of finite gain and limit cycles in
the performance of these modulators. Note that the output is no longer a single bit. This
forces the use of different digital filters than for the first and second order modulators.
Behavioral modeling can also be used to study the digital filtering trade-offs in the
design of these converters.

7.4.5 High Order Loops

A higher order loop is a more direct approach to obtaining the benefits of the better
noise shaping. Feed-forward and feedback paths can be used to help shape the filter for
the modulator. The high order loop will only be conditionally stable. Problems can
occur with larger inputs, and techniques can be applied to limit the growth of signal size
37 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters Oversampling Noise Shaping A/D Converters
or the integrators can be reset if the instability is encountered. Since the feedback is kept
in a single loop, there is less sensitivity to op-amp gain. Depending on the noise shaping
desired, there may be a sensitivity to component variation in the loop filter.

Higher order single loop modulators provide significant modeling challenges. These
loops are typically applied in high resolution applications. Switched-capacitor circuits
are not favored since large capacitors are needed to minimize kT/C noise. Continuous
time circuits can be used in an effort to reduce the size and increase the bandwidth.

7.4.6 Multi-Bit Quantizers

Multi-bit quantizers are often used in the loop. The quantization noise is more random-
ized and the less noise shaping is needed, providing lower oversampling ratios. The key
issue for behavioral modeling is capturing the quantizer. The other parts of the modula-
tor are modeled as presented previously.

7.4.7 Combination of Techniques and Recent Trends

Several of these techniques can be combined to provide higher performance converters.
Most commonly, multi-bit quantization is combined with higher-order loops to achieve
more resolution at a lower oversampling ratio. Behavioral modeling is a key in the
design studies.

In recent years, bandpass delta-sigma modulators have become popular for conversion
of IF signals in RF applications. Rather than using a high-pass noise shaping for the
quantization noise, a bandpass noise shaping is used. The same types of techniques dis-
cussed previously can be applied in the study of these converters.

7.5 Digital Decimation Filtering

In the design of oversampling A/D converters, the effects of the digital decimation filter
are often ignored. The filtering requirements of the digital filter drive the size and power
dissipation. The final resolution of the conversion does not necessarily dictate the word
size of the digital filters since quantization noise effects often require wider word
lengths to preserve resolution. Compilation, synthesis, and digital circuit techniques can
be applied to the design and modeling of these filters using standard Verilog.

7.6 A Behavioral Modeling Example

A key question is the accuracy of the behavioral models. In this section, the results from
a behavioral model are compared to measured results from a fabricated device shown in
Figure 16. The chip integrated a second order modulator and three digital filters.The
total chip area required was 5.1 x 6.0 mm2. The die photo for the signal acquisition
module is shown in Figure 21. Performance results are tabulated in Table 1.

Figure 22 shows a comparison of measured and simulation data for the chip. There is
excellent agreement between the simulation for the signal acquisition module and the
actual measured data. The upper set of lines in the figure represents the resolution com-
ing out of the first digital filter. Finite word lengths used in the final two stages of filter-
ing steal some of the effective SNR, as shown by the lower set of curves. At most, there
is less than 3 dB deviation over the entire 87 dB of dynamic range. The entire chip was
simulated using a C++ based simulation system using the techniques shown in this
38 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

D/A Conversion Data Converters
paper. Models for 1/f and kT/C noise were included in the modulator. Finite word
lengths were accounted for in the digital filter simulations. The example shows how a
fairly simple behavioral model can be used to obtain good agreement with fabricated
chips.

8 D/A Conversion

The majority of this paper focuses on A/D conversion. Many of the techniques already
applied to A/D conversion can be used in modeling D/A converters (DACs). There are
basically two key difficulties in modeling DACs for design and system models. The first
problem is mismatch in the DAC elements. Much like in modeling of the Flash con-
verter, these lead to problems in non-linearity. The second modeling task is capturing

FIGURE 21 Die photo of the oversampling A/D converter chip.

Clock
Buffers

Processor
Core

Sinc3 Filter

Delta Sigma

Modulator

Parallel to Serial Converters
39 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters D/A Conversion
the glitching of the DAC as it switches. In some applications, the DAC output is filtered
by a reconstruction filter, so modeling of the glitch is not important. Other times, the
raw DAC output drives a continuous time system and the glitch energy can have a large
effect on the performance of the system. A behavioral model for DACs with glitching
has been developed and presented [17]. This portion of the paper will focus on modeling
the first problem of mismatch in the DAC elements.

8.1 Switched-Capacitor DACs

Trivial examples of 1-bit switched capacitor DACs were shown in the pipeline and
oversampling A/D conversion sections. Switched capacitor DACs can be used in A/D
conversion when successive approximation is used. Typically, the DAC is comprised of
unit capacitors grouped into binary clusters to make up the array. Each bit in the input
word controls one piece of the binary array. Listing 14 shows a simple model for a

TABLE 1 Summary of chip performance.

Parameter Value

Technology 1.2mm standard CMOS

A/D Interface Area 3.2 x 4.0 mm2 = 12.9 mm2

Extrapolated Dynamic Range 87 dB

Measured Peak SNDR 74 dB

Output Sampling Rate 20 kHz

Oversampling Ratio 256

Anti-alias performance > 65 dB over 0 to 9 kHz

Passband Ripple < 0.15 dB over 0 to 9 kHz

FIGURE 22 Comparison of simulated and measured results.

-100.0 -80.0 -60.0 -40.0 -20.0 0.0
-10.0

10.0

30.0

50.0

70.0

90.0
SNDR in dB

Input Amplitude in dB

Full Interface Results

Measured Data
Simulation

Second Order Loop
and sinc3 decimation filter

Measured Data
Simulation
40 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

D/A Conversion Data Converters
binary weighted DAC. Note that the output only changes once per clock cycle, so there
is no need to model the DAC with two clock phases.

A key problem with binary weighted DACs is in nonlinearity. Since unit capacitors are
grouped to form the binary weighted portions, the variability between the arrays is
larger than if single unit capacitors were added one at a time. The differential nonlinear-
ity will be largest at major carries of the input code. These effects are easily modeled by
adding a term in the definition of the pow2 array.

8.2 Unit Element DACs

Unit element DACs are typically made up of resistors or current sources. Much like in
the Flash converter, a resistor string can be used as a DAC as shown in Figure 23. A
decode tree is needed to select the correct tap to route to the output based on the input
word D1D0. This is a voltage output DAC. For absolute voltages, this will be the most
accurate since the two ends of the resistor string are tied to known voltages. In contrast,
a current steering DAC is made up of an array of current sources connected to differen-
tial pairs as shown in Figure 24. This DAC produces a current output. Since it is a sum
of currents, the full scale range can vary as the sum of the individual sources. In both
cases, for a single LSB change in the input code, a single unit element is added or sub-
tracted to change the DAC output voltage or current.

Listing 15 shows a unit element DAC model with ideal element values generated in an
initial statement. Much like the flash A/D, there is mismatch in the unit elements. This
was modeled much like the approach for the Flash A/D, by setting a randomness on the
units. As with the Flash converter, the units could be generated in an initial statement, or
they could be hand coded in an array. The variation of the units may not be totally ran-
dom and can depend on the layout architecture.

LISTING 14 Verilog AMS code for a binary-weighted DAC.

module ideal_dac(in, out, clk);
input [7:0] in;
wire clock;
wreal out;

parameter real vref = 0.5 from [0:inf);
parameter real agnd = 1.65 from [0:inf);
real pow2 [7:0];
real dacout;
integer i;

initial begin
for (i = 0; i < 8; i = i + 1) pow2[i] = vrefpow(2,i)/256.0;

end

always @(posedge(clk)) begin
out = 0.0;
for (i = 0; i < 8; i = i + 1) code = code + (in[i]) ? pow2[i] : 0.0;

end

assert out = dacout + agnd;
endmodule
41 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Data Converters D/A Conversion
In addressing the dynamic behavior of the DACs, the digital decoding logic affect the
output. There may be different propagation delays for each of the unit cells causing dif-
ferent kinds of glitching patterns depending on the input data pattern.

8.3 Oversampling D/A Conversion

Oversampling and noise shaping can be used for D/A conversion. Models quite similar
to the analog modulator models can be used, but they must be extended to account for
finite word lengths. The digital modulator uses digital integrators with registers used in
place of the accumulating capacitors.

Similar problems exist in modeling the modulator. For a 1-bit output, the shape of the
output pulse stream must be modeled to capture offset and edge rate imbalances if a 1-
bit D/A is used. If a multi-bit DAC is used, all the problems with nonlinearity previ-
ously mentioned need to be addressed.

The modulator creates an analog output with just a few levels. This signal needs to be
filtered with some type of filter, switched-capacitor or continuous time. Accurate mod-
eling of the filter is needed, as the filter can limit both resolution and linearity.

FIGURE 23 Block diagram of a two-bit resistor DAC.

FIGURE 24 Block diagram of a two-bit current steering DAC.

R

R

R

R

D0 D0 D1 D1

out

D1D0 D1D0 D1D0D1D0

Iout
42 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

Summary Data Converters
9 Summary

This paper presented an overview of behavioral modeling techniques for A/D and D/A
converters that avoided the use of the analog procedural block. These models execute
very quickly and have the capability of accurately modeling the major non-ideal effects,
including noise, finite op-amp gain, settling time, and non-linearities. An example of an
oversampling A/D was presented to show the matching possible between fabricated
devices and the behavioral models.

9.1 If You Have Questions

If you have questions about what you have just read, feel free to post them on the Forum
section of The Designer’s Guide Community website. Do so by going to www.designers-
guide.org/Forum.

LISTING 15 Verilog AMS code for a unit element DAC.

module unit_dac(in, out, clk);
input [7:0] in;
wire clock;
wreal out;

parameter real ref = 0.5 from [0:inf);
real ovals[255];
real dacout;
integer i, code;
integer pow2 [7:0];

initial begin
ovals[0] = ref/256.0;
for (i = 1; i < 256; i = i + 1) ovals[i] = ovals[i] + ref/256.0;
for (i = 0; i < 8; i = i + 1) pow2[i] = pow(2, i);

end

always @(posedge(clk)) begin
code = 0;
for (i = 0; i < 8; i = i + 1) code = code + (in[i]) ? pow2[i] : 0.0;
dacout = ovals[code];

end

assert out = dacout;
endmodule
43 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/
http://www.designers-guide.com
http://www.designers-guide.com/Forum
http://www.designers-guide.com/Forum

Data Converters References
References

[1] M. Mar and B. Sullam, “Modeling and Verification of a Programmable Mixed-Sig-
nal Device Using Verilog”, Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), vol. 3, pp. III-903 - III-905, 2003.

[2] C. W. Mangelsdorf, “A 400-MHz Input Flash Converter with Error Correction”,
IEEE Journal of Solid-State Circuits, Vol. 25, No. 1, pp. 184-191, February 1990.

[3] K. Ono, T. Matsuura, E. Imaizumi, H. Okazawa, and R. Shimokawa, “Error Sup-
pressing Encode Logic of FCDL in a 6-b Flash A/D Converter”, IEEE Journal of
Solid-State Circuits, Vol. 32, No. 9, pp. 1460-1464, September 1997.

[4] R. Gregorian and G. C. Temes, Analog MOS Integrated Circuits for Signal Process-
ing, John Wiley and Sons, New York, 1986.

[5] K. C.-H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, “A Higher Order Topology
for Interpolative Modulators for Oversampling A/D Converters”, IEEE Transac-
tions on Circuits and Systems, Vol. 37, No. 3, pp. 309-318, March 1990.

[6] B. Pellegrini, R. Saletti, B. Neri, and P. Terreni, “1/f v Noise Generators”, In Noise
in Physical Systems and 1/f Noise, 1985.

[7] S. H. Lewis, H. S. Fetterman, G. F. Gross, R. Ramachandran, and T. R.
Viswanathan, “A 10-b 20-Msample/s Analog-to-Digital Converter”, IEEE Journal
of Solid-State Circuits, Vol. 27, No. 3, pp. 351-358, March 1992.

[8] S. H. Lewis and P. R. Gray, “A Pipelined 5-Msample/s 9-bit Analog-to-Digital
Converter”, IEEE Journal of Solid-State Circuits, Vol. SC-22, No. 6, pp. 954-961,
December 1987.

[9] J.-H. Shieh, M. Patil, and B. J. Sheu, “Measurement and Analysis of Charge Injec-
tion in MOS Analog Switches”, IEEE Journal of Solid-State Circuits, Vol. SC-22,
No. 2, pp. 277-281, April 1987.

[10] Y.-M. Lin, B. Kim, and P. R. Gray, “A 13-b 2.5-MHz Self-Calibrated Pipelined A/D
Converter in 3-m CMOS”, IEEE Journal of Solid-State Circuits, Vol. 25, No. 4,
pp. 628-636, April 1991.

[11] T. Cho and P. R. Gray, “A 10 b, 20 Msamples/s, 35mW Pipeline A/D Converter”,
IEEE Journal of Solid-State Circuits, Vol. 30, No. 3, pp. 166-172, March 1995.

[12] H. Inose and Y. Yasuda, “A Unity Bit Coding Method by Negative Feedback”, Pro-
ceedings of the IEEE, Vol. 51, pp. 1524-1535, September, 1962.

[13] M. W. Hauser and R. W. Brodersen, “Circuit and Technology Considerations for
MOS Delta-Sigma A/D Converters”, Proceedings of the International Symposium
on Circuits and Systems, pp. 1310-1315, May 1986.

[14] B. E. Boser and B. A. Wooley, “The Design of Sigma-Delta Modulation Analog-to-
Digital Converters”, IEEE Journal of Solid-State Circuits, Vol. 23, No. 6, pp. 1298-
1308, December 1988.

[15] J. C. Candy and G. C. Temes, editors, “Oversampling Delta-Sigma Data Convert-
ers: Theory, Design and Simulation”, IEEE Press, New York, 1992.
44 of 45 The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

References Data Converters
[16] M. F. Mar and R. W. Brodersen, “A Design System for On-Chip Oversampling A/D
Interfaces”, IEEE Transactions on VLSI Systems, Vol. 3, No. 3, pp. 345-354, Sep-
tember 1995.

[17] J. Vandenbussche, G. Van der Plas, G. Gielen, And W. Sansen, “Behavioral Models
of Reusable D/A Converters”, IEEE Transactions on Circuits and Systems - II:
Analog and Digital Signal Processing, Vol. 46, No. 10, pp. 1323-1326, October
1999.
45 of 45The Designer’s Guide Community
www.designers-guide.org

http://www.designers-guide.org/
http://www.designers-guide.org/

	Contents
	1 Introduction
	2 A Simple Functional A/D Model
	3 Flash Converters
	3.1 Introduction
	3.2 Modeling Resistor Mismatch
	3.3 Modeling Bubble Errors
	3.4 Two-Stage A/Ds
	3.5 Folding and Averaging

	4 Modeling Switched-Capacitor Integrators and Gain Stages
	4.1 Switched Capacitor Integrator Analysis.
	4.2 Difference Equation Analysis
	4.3 Modeling the Effects of Finite Op-Amp Gain
	4.4 Modeling the Effects of Non-linearities
	4.5 Combining Finite Gain and Capacitor Nonlinearity
	4.6 Parasitic Input Capacitance of the Op-amp
	4.7 Integrator Settling
	4.8 Integrator Clipping
	4.9 Continuous Time Models of the SC Integrator

	5 Modeling Noise in Switched-Capacitor Circuits
	5.1 Generating White Noise
	5.2 Generating 1/f Noise

	6 Algorithmic and Pipelined A/D Converters
	6.1 Modeling the Pipelined Converter
	6.2 Digital Correction for Comparator Offset
	6.3 Modeling the SC S/H and Gain Stage
	6.4 Digital Logic
	6.5 A Complete Pipeline A/D Model
	6.6 Modeling Non-Idealities in the Pipelined Converter Stage

	7 Oversampling Noise Shaping A/D Converters
	7.1 Modulators for Oversampling A/D Conversion
	7.2 Quantization Noise and Oversampling
	7.3 Noise Shaping and the D-S Modulator Family
	7.4 Developing Accurate High-Level Simulation Models
	7.5 Digital Decimation Filtering
	7.6 A Behavioral Modeling Example

	8 D/A Conversion
	8.1 Switched-Capacitor DACs
	8.2 Unit Element DACs
	8.3 Oversampling D/A Conversion

	9 Summary
	9.1 If You Have Questions

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

